SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Chernykh Denis) "

Search: WFRF:(Chernykh Denis)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chernykh, Denis, et al. (author)
  • NEW ACOUSTICAL TECHNIQUE TO QUANTIFY METHANE EBULLITION IN SEDIMENT WATER COLUMN : A CASE STUDY IN THE LAPTEV SEA, THE ARCTIC OCEAN
  • 2018
  • In: Bulletin of the Tomsk Polytechnic University - Geo Assets Engineering. - : National Research Tomsk Polytechnic University. - 2500-1019. ; 329:11, s. 153-167
  • Journal article (peer-reviewed)abstract
    • The relevance of the research is caused by the need to develop a scientifically based approach to quantitative estimation of bubble transfer of methane and other gases based on acoustic techniques, which allow reliable estimate of methane flow from the bubble unloading areas by sound locators and submarine sonars. The main aim of the research is to investigate the possible application of an acoustical technique based on acoustic scattering in bubble plumes vs the acoustical technique based on calibration which was applied to quantify in situ sonar observations; to show that both techniques can be used for a quantification of methane ebullition in the bottom-water column system. Objects: gas flares or seeps - the emanations of gas in the form of rising bubbles from the seabottom, which form stable regions of their increased concentration in the water column. Methods: modification of acoustical techniques based on acoustic scattering in bubble plumes and on ist calibration which was applied by authors to quantify in situ single sonar observations. Results. We demonstrate a first attempt to use acoustical techniques based on (1) acoustic scattering in bubble plumes vs acoustical technique based on (2) calibration which was applied to quantify in situ sonar observations. It has been shown that both techniques can be used for a quatitative express-evaluation of methane ebullition in the bottom-water system in any aquatic ecosystem including seas, lakes, and rivers, while the first acoustical technique gives the bubble efflux values -20 % lower then the second acoustical technique.
  •  
2.
  • Shakhova, Natalia, et al. (author)
  • Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The rates of subsea permafrost degradation and occurrence of gas-migration pathways are key factors controlling the East Siberian Arctic Shelf (ESAS) methane (CH4) emissions, yet these factors still require assessment. It is thought that after inundation, permafrost-degradation rates would decrease over time and submerged thaw-lake taliks would freeze; therefore, no CH4 release would occur for millennia. Here we present results of the first comprehensive scientific re-drilling to show that subsea permafrost in the near-shore zone of the ESAS has a downward movement of the ice-bonded permafrost table of similar to 14 cm year(-1) over the past 31-32 years. Our data reveal polygonal thermokarst patterns on the seafloor and gas-migration associated with submerged taliks, ice scouring and pockmarks. Knowing the rate and mechanisms of subsea permafrost degradation is a prerequisite to meaningful predictions of near-future CH4 release in the Arctic.
  •  
3.
  • Shakhova, Natalia, et al. (author)
  • Ebullition and storm-induced methane release from the East Siberian Arctic Shelf
  • 2014
  • In: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 7:1, s. 64-70
  • Journal article (peer-reviewed)abstract
    • Vast quantities of carbon are stored in shallow Arctic reservoirs, such as submarine and terrestrial permafrost. Submarine permafrost on the East Siberian Arctic Shelf started warming in the early Holocene, several thousand years ago. However, the present state of the permafrost in this region is uncertain. Here, we present data on the temperature of submarine permafrost on the East Siberian Arctic Shelf using measurements collected from a sediment core, together with sonar-derived observations of bubble flux and measurements of seawater methane levels taken from the same region. The temperature of the sediment core ranged from -1.8 to 0 degrees C. Although the surface layer exhibited the lowest temperatures, it was entirely unfrozen, owing to significant concentrations of salt. On the basis of the sonar data, we estimate that bubbles escaping the partially thawed permafrost inject 100-630 mg methane m(-2) d(-1) into the overlying water column. We further show that water-column methane levels had dropped significantly following the passage of two storms. We suggest that significant quantities of methane are escaping the East Siberian Shelf as a result of the degradation of submarine permafrost over thousands of years. We suggest that bubbles and storms facilitate the flux of this methane to the overlying ocean and atmosphere, respectively.
  •  
4.
  • Shakhova, Natalia, et al. (author)
  • The East Siberian Arctic Shelf : towards further assessment of permafrost-related methane fluxes and role of sea ice
  • 2015
  • In: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 373:2052
  • Journal article (peer-reviewed)abstract
    • Sustained release of methane (CH4) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH4 from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our latest observations, we show that CH4 emissions from this shelf are likely to be determined by the state of subsea permafrost degradation. We observed CH4 emissions from two previously understudied areas of the ESAS: the outer shelf, where subsea permafrost is predicted to be discontinuous or mostly degraded due to long submergence by seawater, and the near shore area, where deep/open taliks presumably form due to combined heating effects of seawater, river run-off, geothermal flux and pre-existing thermokarst. CH4 emissions from these areas emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing and decrease in ice extent could result in a significant increase in CH4 emissions from the ESAS.
  •  
5.
  • Steinbach, Julia, et al. (author)
  • Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf
  • 2021
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:10
  • Journal article (peer-reviewed)abstract
    • The East Siberian Arctic Shelf holds large amounts of inundated carbon and methane (CH4). Holocene warming by overlying seawater, recently fortified by anthropogenic warming, has caused thawing of the underlying subsea permafrost. Despite extensive observations of elevated seawater CH4 in the past decades, relative contributions from different subsea compartments such as early diagenesis, subsea permafrost, methane hydrates, and underlying thermogenic/ free gas to these methane releases remain elusive. Dissolved methane concentrations observed in the Laptev Sea ranged from 3 to 1,500 nM (median 151 nM; oversaturation by similar to 3,800%). Methane stable isotopic composition showed strong vertical and horizontal gradients with source signatures for two seepage areas of delta C-13-CH4 = (-42.6 +/- 0.5)/(-55.0 +/- 0.5) % and delta D-CH4 = (-136.8 +/- 8.0)/(-158.1 +/- 5.5) %, suggesting a thermogenic/ natural gas source. Increasingly enriched delta C-13-CH4 and delta D-CH4 at distance from the seeps indicated methane oxidation. The Delta C-14-CH4 signal was strongly depleted (i.e., old) near the seeps (-993 +/- 19/-1050 +/- 89%). Hence, all three isotope systems are consistent with methane release from an old, deep, and likely thermogenic pool to the outer Laptev Sea. This knowledge of what subsea sources are contributing to the observed methane release is a prerequisite to predictions on how these emissions will increase over coming decades and centuries.
  •  
6.
  • Dudarev, Oleg, et al. (author)
  • East Siberian Sea : Interannual heterogeneity of the suspended particulate matter and its biogeochemical signature
  • 2022
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611 .- 1873-4472. ; 208
  • Research review (peer-reviewed)abstract
    • The East Siberian Sea (ESS) is the largest, shallowest and most icebound Arctic marginal sea. It receives substantial input of terrigenous material and climate-vulnerable old organic carbon from both coastal erosion and rivers draining the extensive permafrost-covered watersheds. This study focuses on the interannual variability and spatial distribution of suspended particulate matter (SPM) in the surface and bottom waters of the ESS during the ice-free period in 2000, 2003, 2004, 2005 and 2008. We report on the composition and variability of particulate organic carbon (POC), total nitrogen (TN), POC/TN ratios, carbon and nitrogen isotopes (δ13C, δ15N) and provide estimates of the contribution of terrestrial organic carbon (terrOC) based on the δ13C isotopic values.The results show that interannual SPM distribution and elemental-isotopic characteristics of POC differ significantly between the western biogeochemical province (WBP; West of 165oE) and the eastern biogeochemical province (EBP; East of 165oE) of the ESS. The SPM mean concentration in the WBP is almost an order of magnitude higher than in the EBP. From west-to-east of the ESS, SPM tends to become more depleted in δ15N, while the δ13C becomes isotopically heavier. This trend can be explained by a shift in organic matter sources from terrigenous origin (erosion of the coastal ice complex and riverine POC) to becoming dominantly from marine plankton.The maximum contribution of terrOC to POC reached 99% in parts of the WBP, but accounts for as low as 1% in parts of the EBP. At the same time, the type of atmospheric circulation and its associated regime of both water circulation and ice transport control a displacement of the semi-stable biogeochemical border between WBP and EBP to the east or to the west if compared to its long-term average position near 165oE. Our multi-year investigation provides a robust observational basis for better understanding of the transport and fate of terrigenous material upon entering the ESS shelf waters. Our results also provide deeper insights into the interaction in the land-shelf sea system of the largest shelf sea system of the World Ocean, the East Siberian Arctic Shelf system.
  •  
7.
  • Greenwood, Sarah L., et al. (author)
  • Multiple re-advances of a Lake Vättern outlet glacier during Fennoscandian Ice Sheet retreat, south-central Sweden
  • 2015
  • In: Boreas. - : Wiley. - 0300-9483 .- 1502-3885. ; 44:4, s. 619-637
  • Journal article (peer-reviewed)abstract
    • Lake Vättern represents a critical region geographically and dynamically in the deglaciation of the Fennoscandian Ice Sheet. The outlet glacier that occupied the basin and its behaviour during ice-sheet retreat were key to the development and drainage of the Baltic Ice Lake, dammed just west of the basin, yet its geometry, extent, thickness, margin dynamics, timing and sensitivity to regional retreat forcing are rather poorly known. The submerged sediment archives of Lake Vättern represent a missing component of the regional Swedish deglaciation history. Newly collected geophysical data, including high-resolution multibeam bathymetry of the lake floor and seismic reflection profiles of southern Lake Vättern, are used here together with a unique 74-m sediment record recently acquired by drill coring, and with onshore LiDAR-based geomorphological analysis, to investigate the deglacial environments and dynamics in the basin and its terrestrial environs. Five stratigraphical units comprise a thick subglacial package attributed to the last glacial period (and probably earlier), and an overlying > 120-m deglacial sequence. Three distinct retreat-re-advance episodes occurred in southern Lake Vättern between the initial deglaciation and the Younger Dryas. In the most recent of these, ice overrode proglacial lake sediments and re-advanced from north of Visingsö to the southern reaches of the lake, where ice up to 400 m thick encroached on land in a lobate fashion, moulding crag-and-tail lineations and depositing till above earlier glacifluvial sediments. This event precedes the Younger Dryas, which our data reveal was probably restricted to north-central sectors of the basin. These dynamics, and their position within the regional retreat chronology, indicate a highly active ice margin during deglaciation, with retreat rates on average 175 m a(-1). The pronounced topography of the Vättern basin and its deep proglacial-dammed lake are likely to have encouraged the dynamic behaviour of this major Fennoscandian outlet glacier.
  •  
8.
  • Swärd, Henrik, et al. (author)
  • Regional deglaciation and postglacial lake development as reflected in a 74m sedimentary record from Lake Vättern, southern Sweden
  • 2016
  • In: GFF. - : Informa UK Limited. - 1103-5897 .- 2000-0863. ; 138:2, s. 336-354
  • Journal article (peer-reviewed)abstract
    • The withdrawal of the Late Weichselian ice sheet and rapid isostatic uplift in southern Scandinavia led to the entrainment of large volumes of melt water within the proglacial Baltic Ice Lake (BIL). The eventual western outpost of BIL, Lake Vattern, has been a focal point for studying the dynamic retreat history of the Late Weichselian ice sheet in south central Sweden. This part of the deglacial history is described from an abundance of terrestrial studies, but, to date, no complimentary long sediment cores from Lake Vattern have been available. Here, we present the results from a unique, 74m borehole in southern Lake Vattern that recovered a Late Pleistocene to Holocene sedimentary sequence. Physical and chemical analyses of the sediment and pore water, together with geophysical mapping, reveal glacial as well as postglacial imprints implying an oscillating ice sheet margin, evidence for neotectonic activity and one or more marine incursions into the lake during deglaciation. We attribute the glaciotectonic deformation of the sediments at 54m below the lake floor to an ice readvance that likely occurred at the same time or before the advance that formed the Levene moraine (approximate to 13.8-13.4cal.kaBP). After this event, potential readvances were likely restricted to a more northerly position in the basin. We identify the final drainage of the BIL, but find evidence for an earlier marine incursion into the Vattern basin (approximate to 13.0cal.kaBP), indicating water exchange between the North Atlantic and the Baltic Ice Lake during the late Allerod.
  •  
9.
  • Weidner, Elizabeth, 1990-, et al. (author)
  • A wideband acoustic method for direct assessment of bubble-mediated methane flux
  • 2019
  • In: Continental Shelf Research. - : Elsevier BV. - 0278-4343 .- 1873-6955. ; 173, s. 104-115
  • Journal article (peer-reviewed)abstract
    • The bubble-mediated transport and eventual fate of methane escaping from the seafloor is of great interest to researchers in many fields. Acoustic systems are frequently used to study gas seep sites, as they provide broad synoptic observations of processes in the water column. However, the visualization and characterization of individual gas bubbles needed for quantitative studies has routinely required the use of optical sensors which offer a limited field of view and require extended amounts of time for deployment and data collection. In this paper, we present an innovative method for studying individual bubbles and estimating gas flux using a calibrated wideband from the Bolin Centre for Climate Research database: http://bolin.su.se/data/.and split-beam echosounder. The extended bandwidth (16 – 26 kHz) affords vertical range resolution of approximately 7.5 cm, allowing for the differentiation of individual bubbles in acoustic data. Split-aperture processing provides phase-angle data used to compensate for transducer beam-pattern effects and to precisely locate bubbles in the transducer field of view. The target strength of individual bubbles is measured and compared to an analytical scattering model to estimate bubble radius, and bubbles are tracked through the water column to estimate rise velocity. The resulting range of bubble radii (0.68–8.40 mm in radius) agrees with those found in other investigations with optical measurements, and the rise velocities trends are consistent with published models. Together, the observations of bubble radius and rise velocity offer a measure of gas flux, requiring nothing more than vessel transit over a seep site, bypassing the need to deploy time-consuming and expensive optical systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view