SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Claessen David) "

Search: WFRF:(Claessen David)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Axelsson, Emil, 1978, et al. (author)
  • The Design and Implementation of Feldspar: An Embedded Language for Digital Signal Processing
  • 2011
  • In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - Berlin, Heidelberg : Springer Berlin Heidelberg. - 1611-3349 .- 0302-9743. - 9783642242755 ; 6647, s. 121-136
  • Conference paper (peer-reviewed)abstract
    • Feldspar is a domain specific language, embedded in Haskell, for programming digital signal processing algorithms. The final aim of a Feldspar program is to generate low level code with good performance. Still, we chose to provide the user with a purely functional DSL. The language is implemented as a minimal, deeply embedded core language, with shallow extensions built upon it. This paper presents full details of the essential parts of the implementation. Our initial conclusion is that this approach works well in our domain, although much work remains.
  •  
3.
  • Axelsson, Emil, 1978, et al. (author)
  • The Design and Implementation of Feldspar: an Embedded Language for Digital Signal Processing
  • 2010
  • In: IFL 2010, the 22nd Symposium on Implementation and Application of Functional Languages.
  • Conference paper (other academic/artistic)abstract
    • Feldspar is a Domain Specific Language, embedded in Haskell, for programming Digital Signal Processing algorithms. The final aim of a Feldspar program is to generate low level code with good performance. Still, we chose to provide the user with a purely functional DSL. The language is implemented as a minimal, deeply embedded core language, with shallow extensions built upon it. This paper presents full details of the essential parts of the implementation. Our initial conclusion is that this approach works well in our domain, although much work remains.
  •  
4.
  •  
5.
  •  
6.
  • Claessen, David, et al. (author)
  • The effect of population size and recombination on delayed evolution of polymorphism and speciation in sexual populations
  • 2008
  • In: American Naturalist. - : University of Chicago Press. - 0003-0147 .- 1537-5323. ; 172:1, s. E18-34
  • Journal article (peer-reviewed)abstract
    • Recent theory suggests that absolute population size may qualitatively influence the outcome of evolution under disruptive selection in asexual populations. Large populations are predicted to undergo rapid evolutionary branching; however, in small populations, the waiting time to branching increases steeply with decreasing abundance, and below a critical size, the population remains monomorphic indefinitely. Here, we (1) extend the theory to sexual populations and (2) confront its predictions with empirical data, testing statistically whether lake size affects the level of resource polymorphism in arctic char (Salvelinus alpinus) in 22 lakes of different sizes. For a given level of recombination, our model predicts qualitatively similar relations between population size and time to evolutionary branching (either speciation or evolution of genetic polymorphism) as the asexual model, while recombination further increases the delay to branching. The loss of polymorphism at certain loci, an inherent aspect of multilocus-trait evolution, may increase the delay to speciation, resulting in stable genetic polymorphism without speciation. The empirical analysis demonstrates that the occurrence of resource polymorphism depends on both lake size and the number of coexisting fish species. For a given number of coexisting species, the level of polymorphism increases significantly with lake size, thus confirming our model prediction.
  •  
7.
  •  
8.
  • De Roos, André M, et al. (author)
  • Simplifying a physiologically structured population model to a stage-structured biomass model.
  • 2008
  • In: Theoretical Population Biology. - : Elsevier Inc.. - 0040-5809 .- 1096-0325. ; 73:1, s. 47-62
  • Journal article (peer-reviewed)abstract
    • We formulate and analyze an archetypal consumer-resource model in terms of ordinary differential equations that consistently translates individual life history processes, in particular food-dependent growth in body size and stage-specific differences between juveniles and adults in resource use and mortality, to the population level. This stage-structured model is derived as an approximation to a physiologically structured population model, which accounts for a complete size-distribution of the consumer population and which is based on assumptions about the energy budget and size-dependent life history of individual consumers. The approximation ensures that under equilibrium conditions predictions of both models are completely identical. In addition we find that under non-equilibrium conditions the stage-structured model gives rise to dynamics that closely approximate the dynamics exhibited by the size-structured model, as long as adult consumers are superior foragers than juveniles with a higher mass-specific ingestion rate. When the mass-specific intake rate of juvenile consumers is higher, the size-structured model exhibits single-generation cycles, in which a single cohort of consumers dominates population dynamics throughout its life time and the population composition varies over time between a dominance by juveniles and adults, respectively. The stage-structured model does not capture these dynamics because it incorporates a distributed time delay between the birth and maturation of an individual organism in contrast to the size-structured model, in which maturation is a discrete event in individual life history. We investigate model dynamics with both semi-chemostat and logistic resource growth.
  •  
9.
  •  
10.
  • Persson, Lennart, et al. (author)
  • Cannibalism in a size-structured population : energy extraction and control
  • 2004
  • In: Ecological Monographs. - : Wiley. - 0012-9615 .- 1557-7015. ; 74:1, s. 135-157
  • Journal article (peer-reviewed)abstract
    • Recent size-structured cannibalistic models point to the importance of the energy gain by cannibals and also show that this gain may result in the emergence of giant individuals. We use a combination of a 10-year field study of a perch (Perca fluviatilis) population and quantitative within-season modeling of individual and population-level dynamics to investigate which mechanisms are most likely to drive the dynamics of the studied perch population. We focused on three main aspects to explain observed discrepancies between earlier model predictions and data: (1) introduction of more than one shared resource between cannibals and victims, (2) whether or not several victim age cohorts are necessary to allow giant growth, and (3) the intensity of inter-cohort competition between young-of-the-year (YOY) perch and 1-yr-old perch. At the start of the study period, the perch population was dominated by “stunted” perch individuals, and recruitment of perch to an age of 1-yr-old was negligible. Following a major death in adult perch, strong recruitments of perch to 1-yr-old were thereafter observed for a number of years. As 1-yr-olds these successful recruiters subsequently starved to death due to competition with the new YOY. The few surviving adult perch accelerated substantially in growth and became “giants.” At the end of the study period, the perch population moved back to the situation with stunted individuals. There was a high agreement between observed diets of cannibalistic perch and those predicted by the model for both the stunted and the giant phases. Analyses of growth rates showed that cannibalistic perch could become giants on a diet of YOY perch only, but that a supplement with the second shared resource (macroinvertebrates) was needed to reach the observed sizes. Modeling of growth and diet in the giant phase showed an exploitative competitive effect of YOY perch on 1-yr-old perch, but a restriction in habitat use of 1-yr-old perch had to be assumed to yield the observed growth rate and diet. The resource dynamics of zooplankton and macroinvertebrates were both accurately predicted by the model. Also, YOY perch mortality was accurately predicted and, furthermore, suggested that one of the trawling methods used may underestimate the number of YOY perch when they increase in size. We conclude that the presence of a second shared resource and the restricted habitat use and absence of cannibalistic consumption by 1-yr-old perch individuals are two important mechanisms to explain the discrepancy between model predictions and data. Our results also point to the fact that that the dynamics observed may be explained by complex dynamics not involving the presence of a giant and dwarf cycle.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view