SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Clayton Cuch Daniel) "

Search: WFRF:(Clayton Cuch Daniel)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Clayton-Cuch, Daniel, et al. (author)
  • Biochemical and in silico characterization of glycosyltransferases from red sweet cherry (Prunus avium L.) reveals their broad specificity toward phenolic substrates
  • 2024
  • In: Food Chemistry: Molecular Sciences. - : Elsevier BV. - 2666-5662. ; 8
  • Journal article (peer-reviewed)abstract
    • Polyphenolic compounds are a class of phytonutrients that play important roles in plants and contribute to human health when incorporated into our diet through fruit consumption. A large proportion occur as glycoconjugates but the enzymes responsible for their glycosylation are poorly characterized. Here, we report the biochemical and structural characterization of two glycosyltransferases from sweet cherry named PaUGT1 and PaUGT2. Both are promiscuous glucosyltransferases active on diverse anthocyanidins and flavonols, as well as phenolic acids in the case of PaUGT1. They also exhibit weaker galactosyltransferase activity. The expression of the gene encoding PaUGT1, the most active of the two proteins, follows anthocyanin accumulation during fruit ripening, suggesting that this enzyme is the primary glycosyltransferase involved in flavonoid glycosylation in sweet cherry. It can potentially be used to synthesize diverse glycoconjugates of flavonoids for integration into bioactive formulations, and for generating new fruit cultivars with enhanced health-promoting properties using breeding methods.
  •  
2.
  • Clayton-Cuch, Daniel, et al. (author)
  • Identification and characterisation of MdUGT78T2 as a galactosyltransferase with dual activity on flavonol and anthocyanidin substrates in red-skinned apple fruit (Malus domestica L.)
  • 2023
  • In: Food Chemistry. - : Elsevier BV. - 0308-8146 .- 1873-7072. ; 424
  • Journal article (peer-reviewed)abstract
    • Anthocyanidin and flavonol glycosides have been linked to the health-promoting effects associated with apple consumption. However, very few enzymes involved in flavonoid glycosylation have been characterised to date. Here, we present the identification and phylogenetic analysis of 234 putative glycosyltransferases involved in flavonoid biosynthesis, and detail the biochemical and structural characterisation of MdUGT78T2 as a strict galactosyltransferase involved in the formation of quercetin-3-O-galactoside and cyanidin-3-O-galactoside, the major glycoconjugates of flavonoids in apple. The enzyme is also active on other flavonoids but with a lower catalytic efficiency. Our data, complemented with gene expression analysis suggest that MdUGT78T2 synthesises the glycoconjugates at both the early and late stages of fruit development. This newly discovered type of catalytic activity can potentially be exploited for in vitro modification of flavonoids to increase their stability in food products and to modify apple fruits and other commercial crops through breeding approaches to enhance their health benefits.
  •  
3.
  • Clayton-Cuch, Daniel, et al. (author)
  • Auxin Treatment Enhances Anthocyanin Production in the Non-Climacteric Sweet Cherry (Prunus avium L.)
  • 2021
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:19
  • Journal article (peer-reviewed)abstract
    • Abscisic acid (ABA) is a key signaling molecule promoting ripening of non-climacteric fruits such as sweet cherry (Prunus avium L.). To shed light on the role of other hormones on fruit development, ripening and anthocyanin production, the synthetic auxin 1-naphthaleneacetic acid (NAA) was applied to sweet cherry trees during the straw-color stage of fruit development. NAA-treated fruits exhibited higher concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and ABA-glucose ester (ABA-GE), which are a precursor of ethylene and a primary storage form of ABA, respectively. Consistent with these observations, transcript levels of genes encoding ACC synthase and ACC oxidase, both involved in ethylene biosynthesis, were increased after 6 days of NAA treatment, and both ABA concentration and expression of the regulator gene of ABA biosynthesis (NCED1 encoding 9-cis-epoxycarotenoid dioxygenase) were highest during early fruit ripening. In addition, transcript levels of key anthocyanin regulatory, biosynthetic and transport genes were significantly upregulated upon fruit exposure to NAA. This was accompanied by an increased anthocyanin concentration and fruit weight whilst fruit firmness and cracking index decreased. Altogether our data suggest that NAA treatment alters ethylene production, which in turn induces ripening in sweet cherry and enhanced anthocyanin production, possibly through ABA metabolism. The results from our study highlight the potential to use a single NAA treatment for manipulation of cherry ripening.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view