SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cole Jason) "

Search: WFRF:(Cole Jason)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • McArthur, Jason D, et al. (author)
  • Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation.
  • 2008
  • In: The FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - : Wiley. - 1530-6860. ; 22:9, s. 3146-3153
  • Journal article (peer-reviewed)abstract
    • A common mammalian defense mechanism employed to prevent systemic dissemination of invasive bacteria involves occlusion of local microvasculature and encapsulation of bacteria within fibrin networks. Acquisition of plasmin activity at the bacterial cell surface circumvents this defense mechanism, allowing invasive disease initiation. To facilitate this process, S. pyogenes secretes streptokinase, a plasminogen-activating protein. Streptokinase polymorphism exhibited by S. pyogenes isolates is well characterized. However, the functional differences displayed by these variants and the biological significance of this variation has not been elucidated. Phylogenetic analysis of ska sequences from 28 S. pyogenes isolates revealed 2 main sequence clusters (clusters 1 and 2). All strains secreted streptokinase, as determined by Western blotting, and were capable of acquiring cell surface plasmin activity after incubation in human plasma. Whereas culture supernatants from strains containing cluster 1 ska alleles also displayed soluble plasminogen activation activity, supernatants from strains containing cluster 2 ska alleles did not. Furthermore, plasminogen activation activity in culture supernatants from strains containing cluster 2 ska alleles could only be detected when plasminogen was prebound with fibrinogen. This study indicates that variant streptokinase proteins secreted by S. pyogenes isolates display differing plasminogen activation characteristics and may therefore play distinct roles in disease pathogenesis.-McArthur, J. D., McKay, F. C., Ramachandran, V., Shyam, P., Cork, A. J., Sanderson-Smith, M. L., Cole, J. N., Ringdahl, U., Sjöbring, U., Ranson, M., Walker, M. J. Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation.
  •  
2.
  • Andrews, Timothy, et al. (author)
  • On the Effect of Historical SST Patterns on Radiative Feedback
  • 2022
  • In: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 127:18
  • Journal article (peer-reviewed)abstract
    • We investigate the dependence of radiative feedback on the pattern of sea-surface temperature (SST) change in 14 Atmospheric General Circulation Models (AGCMs) forced with observed variations in SST and sea-ice over the historical record from 1871 to near-present. We find that over 1871–1980, the Earth warmed with feedbacks largely consistent and strongly correlated with long-term climate sensitivity feedbacks (diagnosed from corresponding atmosphere-ocean GCM abrupt-4xCO2 simulations). Post 1980, however, the Earth warmed with unusual trends in tropical Pacific SSTs (enhanced warming in the west, cooling in the east) and cooling in the Southern Ocean that drove climate feedback to be uncorrelated with—and indicating much lower climate sensitivity than—that expected for long-term CO2 increase. We show that these conclusions are not strongly dependent on the Atmospheric Model Intercomparison Project (AMIP) II SST data set used to force the AGCMs, though the magnitude of feedback post 1980 is generally smaller in nine AGCMs forced with alternative HadISST1 SST boundary conditions. We quantify a “pattern effect” (defined as the difference between historical and long-term CO2 feedback) equal to 0.48 ± 0.47 [5%–95%] W m−2 K−1 for the time-period 1871–2010 when the AGCMs are forced with HadISST1 SSTs, or 0.70 ± 0.47 [5%–95%] W m−2 K−1 when forced with AMIP II SSTs. Assessed changes in the Earth's historical energy budget agree with the AGCM feedback estimates. Furthermore satellite observations of changes in top-of-atmosphere radiative fluxes since 1985 suggest that the pattern effect was particularly strong over recent decades but may be waning post 2014.
  •  
3.
  • Bates, Scott T., et al. (author)
  • Meeting Report: Fungal ITS Workshop (October 2012)
  • 2013
  • In: Standards in Genomic Sciences. - : Springer Science and Business Media LLC. - 1944-3277. ; 8:1, s. 118-123
  • Journal article (peer-reviewed)abstract
    • This report summarizes a meeting held in Boulder, CO USA (19–20 October 2012) on fungal community analyses using ultra-high-throughput sequencing of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA (rRNA) genes. The meeting was organized as a two-day workshop, with the primary goal of supporting collaboration among researchers for improving fungal ITS sequence resources and developing recommendations for standard ITS primers for the research community.
  •  
4.
  • Chen, Cheng, et al. (author)
  • Combining camera trap surveys and IUCN range maps to improve knowledge of species distributions
  • In: Conservation Biology. - 0888-8892.
  • Journal article (peer-reviewed)abstract
    • Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species’ geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) maps, areas that are not habitat have been removed from IUCN ranges to reduce commission errors, but their concordance with actual species occurrence also remains untested. We tested concordance between occurrences recorded in camera trap surveys and predicted occurrences from the IUCN and AOH maps for 510 medium- to large-bodied mammalian species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only mismatches occurred within 200 km of range edges. Only 4% of species occurrences were detected by cameras outside IUCN ranges. The probability of mismatches between cameras and the IUCN range was significantly higher for smaller-bodied mammals and habitat specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests. Our findings suggest that range and AOH maps rarely underrepresent areas where species occur, but they may more often overrepresent ranges by including areas where a species may be absent, particularly at range edges. We suggest that combining range maps with data from ground-based biodiversity sensors, such as camera traps, provides a richer knowledge base for conservation mapping and planning.
  •  
5.
  • Chen, Cheng, et al. (author)
  • Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity
  • 2022
  • In: Conservation Letters. - : Wiley. - 1755-263X. ; 15:2
  • Journal article (peer-reviewed)abstract
    • The establishment of protected areas (PAs) is a central strategy for global biodiversity conservation. While the role of PAs in protecting habitat has been highlighted, their effectiveness at protecting mammal communities remains unclear. We analyzed a global dataset from over 8671 camera traps in 23 countries on four continents that detected 321 medium- to large-bodied mammal species. We found a strong positive correlation between mammal taxonomic diversity and the proportion of a surveyed area covered by PAs at a global scale (β = 0.39, 95% confidence interval [CI] = 0.19–0.60) and in Indomalaya (β = 0.69, 95% CI = 0.19–1.2), as well as between functional diversity and PA coverage in the Nearctic (β = 0.47, 95% CI = 0.09–0.85), after controlling for human disturbances and environmental variation. Functional diversity was only weakly (and insignificantly) correlated with PA coverage at the global scale (β = 0.22, 95% CI = −0.02–0.46), pointing to a need to better understand the functional response of mammal communities to protection. Our study provides important evidence of the global effectiveness of PAs in conserving terrestrial mammals and emphasizes the critical role of area-based conservation in a post-2020 biodiversity framework.
  •  
6.
  • Loeb, Norman G., et al. (author)
  • New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES
  • 2020
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:5
  • Journal article (peer-reviewed)abstract
    • We compare top-of-atmosphere (TOA) radiative fluxes observed by the Clouds and the Earth's Radiant Energy System (CERES) and simulated by seven general circulation models forced with observed sea-surface temperature (SST) and sea-ice boundary conditions. In response to increased SSTs along the equator and over the eastern Pacific (EP) following the so-called global warming hiatus of the early 21st century, simulated TOA flux changes are remarkably similar to CERES. Both show outgoing shortwave and longwave TOA flux changes that largely cancel over the west and central tropical Pacific, and large reductions in shortwave flux for EP low-cloud regions. A model's ability to represent changes in the relationship between global mean net TOA flux and surface temperature depends upon how well it represents shortwave flux changes in low-cloud regions, with most showing too little sensitivity to EP SST changes, suggesting a pattern effect that may be too weak compared to observations.
  •  
7.
  • Secundino, Ismael, et al. (author)
  • Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation.
  • 2016
  • In: Journal of Molecular Medicine. - : Springer Science and Business Media LLC. - 1432-1440 .- 0946-2716. ; 94, s. 219-219
  • Journal article (peer-reviewed)abstract
    • Inhibitory CD33-related Siglec receptors regulate immune cell activation upon engaging ubiquitous sialic acids (Sias) on host cell surface glycans. Through molecular mimicry, Sia-expressing pathogen group B Streptococcus binds inhibitory human Siglec-9 (hSiglec-9) to blunt neutrophil activation and promote bacterial survival. We unexpectedly discovered that hSiglec-9 also specifically binds high molecular weight hyaluronan (HMW-HA), another ubiquitous host glycan, through a region of its terminal Ig-like V-set domain distinct from the Sia-binding site. HMW-HA recognition by hSiglec-9 limited neutrophil extracellular trap (NET) formation, oxidative burst, and apoptosis, defining HMW-HA as a regulator of neutrophil activation. However, the pathogen group A Streptococcus (GAS) expresses a HMW-HA capsule that engages hSiglec-9, blocking NET formation and oxidative burst, thereby promoting bacterial survival. Thus, a single inhibitory lectin receptor detects two distinct glycan "self-associated molecular patterns" to maintain neutrophil homeostasis, and two leading human bacterial pathogens have independently evolved molecular mimicry to exploit this immunoregulatory mechanism.
  •  
8.
  • Smith, Christopher J., et al. (author)
  • Effective radiative forcing and adjustments in CMIP6 models
  • 2020
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:16, s. 9591-9618
  • Journal article (peer-reviewed)abstract
    • The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (+/- 0.23) W m(-2), comprised of 1.81 (+/- 0.09) Wm(-2) from CO2, 1.08 (+/- 0.21) Wm(-2) from other well-mixed greenhouse gases, -1.01 (+/- 0.23) W m(-2) from aerosols and -0.09 (+/- 0.13) W m(-2) from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m(-2). The majority of the remaining 0.21 W m(-2) is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol-cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from -0.63 to -1.37 W m(-2), exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4 x CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
  •  
9.
  • Stephens, Graeme L., et al. (author)
  • The changing nature of Earth's reflected sunlight
  • 2022
  • In: Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences. - : The Royal Society. - 1364-5021 .- 1471-2946. ; 478:2263
  • Journal article (peer-reviewed)abstract
    • The increased rate of sea-level rise suggests that Earth's energy imbalance is also increasing over time. This study assesses whether 20 years of direct observations of this energy imbalance from Earth-orbiting satellites support the existence of a real trend in this imbalance and the components of it and finds. Changes to the imbalance observed are found to be consistent across multiple sources of observations. The majority of recent studies now clearly point to this energy imbalance being positive, while forced by increasing greenhouse gas concentrations in the atmosphere, being amplified significantly by decreases to the amount of sunlight reflected by Earth to space. Here, we show that the global changes observed appear largely from reductions in the amount of sunlight scattered by Earth's atmosphere. These reductions, in turn, are found to be almost equally split between reduced reflection from the cloudy and clear regions of the atmosphere, with the latter being suggestive of reduced scattering by aerosol particles over the observational period. Climate models, however, show an almost exclusive response from clouds, and a slightly exaggerated darkening of the surface. Thus, models that match the global shortwave change do so for the wrong reasons.
  •  
10.
  • Stjern, Camilla W., et al. (author)
  • Response to marine cloud brightening in a multi-model ensemble
  • 2018
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:2, s. 621-634
  • Journal article (peer-reviewed)abstract
    • Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50% increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to -1.9W m(-2), with a substantial inter-model spread of -0.6 to -2.5W m(-2). The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020-2069) 0.96 [-0.17 to -1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally aver-aged there is a weak but significant precipitation decrease of -2.35 [-0.57 to -2.96]% due to a colder climate, but at low latitudes there is a 1.19% increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view