SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cordella Daniela) "

Search: WFRF:(Cordella Daniela)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ajjan, Fátima, et al. (author)
  • Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment
  • 2017
  • In: Polymer international. - : WILEY. - 0959-8103 .- 1097-0126. ; 66:8, s. 1119-1128
  • Research review (peer-reviewed)abstract
    • This paper presents the work carried out within the European project RENAISSANCE-ITN, which was dedicated to the development of innovative polyelectrolytes for energy and environmental applications. Within the project different types of innovative polyelectrolytes were synthesized such as poly(ionic liquid)s coming from renewable or natural ions, thiazolium cations, catechol functionalities or from a new generation of cheap deep eutectic monomers. Further, macromolecular architectures such as new poly(ionic liquid) block copolymers and new (semi)conducting polymer/polyelectrolyte complexes were also developed. As the final goal, the application of these innovative polymers in energy and the environment was investigated. Important advances in energy storage technologies included the development of new carbonaceous materials, new lignin/conducting polymer biopolymer electrodes, new iongels and single-ion conducting polymer electrolytes for supercapacitors and batteries and new poly(ionic liquid) binders for batteries. On the other hand, the use of innovative polyelectrolytes in sustainable environmental technologies led to the development of new liquid and dry water, new materials for water cleaning technologies such as flocculants, oil absorbers, new recyclable organocatalyst platforms and new multifunctional polymer coatings with antifouling and antimicrobial properties. All in all this paper demonstrates the potential of poly(ionic liquid)s for high-value applications in energy and enviromental areas. (c) 2017 Society of Chemical Industry
  •  
2.
  • Patil, Nagaraj, et al. (author)
  • Surface- and Redox-Active Multifunctional Polyphenol-Derived Poly(ionic liquid)s: Controlled Synthesis and Characterization
  • 2016
  • In: Macromolecules. - : AMER CHEMICAL SOC. - 0024-9297 .- 1520-5835. ; 49:20, s. 7676-7691
  • Journal article (peer-reviewed)abstract
    • Combining the redox activity and remarkable adhesion propensity of polyphenols (such as catechol or pyrogallol) with the numerous tunable properties of poly(ionic liquid)s (PILs) is an attractive route to design inventive multifunctional macromolecular platforms. In this contribution, we describe the first synthesis of a novel family of structurally well-defined PILs functionalized with catechol/pyrogallol/phenol pendants by organometallic-mediated radical polymerization (OMRP) using an alkyl cobalt(III) complex as initiator and mediating agent. The living character of the chains is also exploited to produce di- and triblock PILs, and the facile counteranion exchange reactions afforded a library of PILs-bearing free phenol/catechol/pyrogallol moieties. Electrochemical investigations of catechol/pyrogallol-derived PILs in aqueous medium demonstrated the characteristic catechol to o-quinone transformations, whereas, quasi reversible doping/undoping with supporting electrolyte cations (Li+/tetrabutylammonium(+)) has been observed in organic media, suggesting a bright future for this new family of redox-active PILs as cathode material for secondary energy storage devices. Also, pendant catechol/pyrogallol groups mediated sustained anchoring onto the gold surface conferred PILs properties to the interface. As a proof-of-concept, both the adsorption and inhibition of proteins on polymer modified surfaces have been demonstrated in real time using the quartz crystal microbalance with dissipation technique. The exquisite physicochemical tunability of these innovative surface- and redox-active PILs makes them excellent candidates for a broad range of potential applications, including "smart surfaces" and electrochemical energy storage devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view