SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Corsi Daniel J) "

Search: WFRF:(Corsi Daniel J)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  • Kasliwal, Mansi M., et al. (author)
  • Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Journal article (peer-reviewed)abstract
    • We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg(2), a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10(-25) yr(-1). The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (-16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day(-1) (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than -16.6 mag assuming flat evolution (fading by 1 mag day(-1)) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than -16.6 mag. Comparing to model grids, we find that some kilonovae must have M-ej M, X-lan > 10(-4), or > 30 degrees to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of -16 mag would constrain the maximum fraction of bright kilonovae to <25%.
  •  
3.
  • Ho, Anna Y. Q., et al. (author)
  • SN 2020bvc : A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Journal article (peer-reviewed)abstract
    • We present optical, radio, and X-ray observations of SN 2020bvc (=ASASSN-20bs, ZTF 20aalxlis), a nearby (z = 0.0252; d.=.114Mpc) broad-line (BL) Type Ic supernova (SN) and the first double-peaked Ic-BL discovered without a gamma-ray burst (GRB) trigger. Our observations show that SN 2020bvc shares several properties in common with the Ic-BL SN 2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio luminosity (L-radio approximate to 10(37) erg s(-1)) is brighter than ordinary core-collapse SNe but fainter than LLGRB SNe such as SN 1998bw (associated with LLGRB 980425). We model our VLA observations (spanning 13-43 days) as synchrotron emission from a mildly relativistic (v greater than or similar to 0.3c) forward shock. Second, with Swift and Chandra, we detect X-ray emission (L-X approximate to 10(41) erg s(-1)) that is not naturally explained as inverse Compton emission or part of the same synchrotron spectrum as the radio emission. Third, high-cadence (6x night(-1)) data from the Zwicky Transient Facility (ZTF) show a double-peaked optical light curve, the first peak from shock cooling of extended low-mass material (mass M-e < 10(-2) M-circle dot at radius R-e > 10(12) cm) and the second peak from the radioactive decay of 56Ni. SN 2020bvc is the first double-peaked Ic-BL SN discovered without a GRB trigger, so it is noteworthy that it shows X-ray and radio emission similar to LLGRB SNe. For four of the five other nearby (z less than or similar to 0.05) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN 2006aj and SN 2020bvc, i.e., that lasts approximate to 1 day.and reaches a peak luminosity M approximate to -18. Follow-up X-ray and radio observations of Ic-BL SNe with well-sampled early optical light curves will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.
  •  
4.
  • Andreoni, Igor, et al. (author)
  • Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory
  • 2022
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 260:1
  • Journal article (peer-reviewed)abstract
    • The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory's Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events.
  •  
5.
  • Ho, Anna Y. Q., et al. (author)
  • Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova : Pre-explosion Emission and a Rapidly Rising Luminous Transient
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 887:2
  • Journal article (peer-reviewed)abstract
    • We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 +/- 0.1 mag hr(-1)) and luminous (M-g,M- peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (L-bol greater than or similar to 3 x 10(44) erg s(-1)), the short rise time (t(rise) = 3 days in g band), and the blue colors at peak (g-r similar to -0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T-eff greater than or similar to 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M-g similar to M-r approximate to -14 mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E-gamma,E- iso < 4.9 x 10(48) erg, a limit on X-ray emission L-X < 10(40) erg s(-1), and a limit on radio emission nu L-v less than or similar to 10(37) erg s(-1). Taken together, we find that the early (< 10 days) data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M-circle dot) at large radii (3 x 10(14) cm) that was ejected in eruptive pre-explosion mass-loss episodes. The late-time (> 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56.
  •  
6.
  • Anand, Shreya, et al. (author)
  • Collapsars as Sites of r-process Nucleosynthesis : Systematic Photometric Near-infrared Follow-up of Type Ic-BL Supernovae
  • 2024
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 962:1
  • Journal article (peer-reviewed)abstract
    • One of the open questions following the discovery of GW170817 is whether neutron star (NS) mergers are the only astrophysical sites capable of producing r-process elements. Simulations have shown that 0.01–0.1 M⊙ of r-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both NS mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature of r-process nucleosynthesis in the binary NS merger GW170817 was its long-lasting near-infrared (NIR) emission, thus motivating a systematic photometric study of the light curves of broad-lined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL—including 18 observed with the Zwicky Transient Facility and 7 from the literature—in the optical/NIR bands to determine what quantity of r-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account for r-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on the r-process mass for these SNe. We also perform independent light curve fits to models without the r-process. We find that the r-process-free models are a better fit to the light curves of the objects in our sample. Thus, we find no compelling evidence of r-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities of r-process ejecta mass or indicate whether all collapsars are completely devoid of r-process nucleosynthesis.
  •  
7.
  • Ho, Anna Y. Q., et al. (author)
  • The Broad-lined Ic Supernova ZTF18aaqjovh (SN 2018bvw) : An Optically Discovered Engine-driven Supernova Candidate with Luminous Radio Emission
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 893:2
  • Journal article (peer-reviewed)abstract
    • We present ZTF18aaqjovh (SN 2018bvw), a high-velocity (broad-lined) stripped-envelope (Type Ic) supernova (Ic-BL SN) discovered in the Zwicky Transient Facility one-day cadence survey. ZTF18aaqjovh shares a number of features in common with engine-driven explosions: the photospheric velocity and the shape of the optical light curve are very similar to those of the Type.Ic-BL SN 1998bw, which was associated with a low-luminosity gamma-ray burst (LLGRB) and had relativistic ejecta. However, the radio luminosity of ZTF18aaqjovh is almost two orders of magnitude fainter than that of SN 1998bw at the same velocity phase, and the shock velocity is at most mildly relativistic (v.=.0.06-0.4c). A search of high-energy catalogs reveals no compelling gamma-ray burst (GRB) counterpart to ZTF18aaqjovh, and the limit on the prompt GRB luminosity of g >> ' L 1.6 10 erg s, iso 48 1 excludes a classical GRB but not an LLGRB. Altogether, ZTF18aaqjovh represents another transition event between engine-driven SNe associated with GRBs and ordinary Ic-BL SNe.
  •  
8.
  • Corsi, Alessandra, et al. (author)
  • A Search for Relativistic Ejecta in a Sample of ZTF Broad-lined Type Ic Supernovae
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 953:2
  • Journal article (peer-reviewed)abstract
    • The dividing line between gamma-ray bursts (GRBs) and ordinary stripped-envelope core-collapse supernovae (SNe) is yet to be fully understood. Observationally mapping the variety of ejecta outcomes (ultrarelativistic, mildly relativistic, or nonrelativistic) in SNe of Type Ic with broad lines (Ic-BL) can provide a key test to stellar explosion models. However, this requires large samples of the rare SN Ic-BL events with follow-up observations in the radio, where fast ejecta can be probed largely free of geometry and viewing angle effects. Here, we present the results of a radio (and X-ray) follow-up campaign of 16 SNe Ic-BL detected by the Zwicky Transient Facility (ZTF). Our radio campaign resulted in four counterpart detections and 12 deep upper limits. None of the events in our sample is as relativistic as SN 1998bw and we constrain the fraction of SN 1998bw-like explosions to <19% (3σ Gaussian equivalent), a factor of ≈2 smaller than previously established. We exclude relativistic ejecta with radio luminosity densities in between ≈5 × 1027 erg s−1 Hz−1 and ≈1029 erg s−1 Hz−1 at t ≳ 20 days since explosion for ≈60% of the events in our sample. This shows that SNe Ic-BL similar to the GRB-associated SNe 1998bw, 2003lw, and 2010bh, or to the relativistic SNe 2009bb and iPTF17cw, are rare. Our results also exclude an association of the SNe Ic-BL in our sample with largely off-axis GRBs with energies E ≳ 1050 erg. The parameter space of SN 2006aj-like events (faint and fast-peaking radio emission) is, on the other hand, left largely unconstrained, and systematically exploring it represents a promising line of future research.
  •  
9.
  • Palafox, Benjamin, et al. (author)
  • Wealth and cardiovascular health: a cross-sectional study of wealth-related inequalities in the awareness, treatment and control of hypertension in high-, middle- and low-income countries.
  • 2016
  • In: International journal for equity in health. - : Springer Science and Business Media LLC. - 1475-9276. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Effective policies to control hypertension require an understanding of its distribution in the population and the barriers people face along the pathway from detection through to treatment and control. One key factor is household wealth, which may enable or limit a household's ability to access health care services and adequately control such a chronic condition. This study aims to describe the scale and patterns of wealth-related inequalities in the awareness, treatment and control of hypertension in 21 countries using baseline data from the Prospective Urban and Rural Epidemiology study.A cross-section of 163,397 adults aged 35 to 70years were recruited from 661 urban and rural communities in selected low-, middle- and high-income countries (complete data for this analysis from 151,619 participants). Using blood pressure measurements, self-reported health and household data, concentration indices adjusted for age, sex and urban-rural location, we estimate the magnitude of wealth-related inequalities in the levels of hypertension awareness, treatment, and control in each of the 21 country samples.Overall, the magnitude of wealth-related inequalities in hypertension awareness, treatment, and control was observed to be higher in poorer than in richer countries. In poorer countries, levels of hypertension awareness and treatment tended to be higher among wealthier households; while a similar pro-rich distribution was observed for hypertension control in countries at all levels of economic development. In some countries, hypertension awareness was greater among the poor (Sweden, Argentina, Poland), as was treatment (Sweden, Poland) and control (Sweden).Inequality in hypertension management outcomes decreased as countries became richer, but the considerable variation in patterns of wealth-related inequality - even among countries at similar levels of economic development - underscores the importance of health systems in improving hypertension management for all. These findings show that some, but not all, countries, including those with limited resources, have been able to achieve more equitable management of hypertension; and strategies must be tailored to national contexts to achieve optimal impact at population level.
  •  
10.
  • Yang, Sheng, et al. (author)
  • Optical Follow-up of Gravitational-wave Events during the Second Advanced LIGO/VIRGO Observing Run with the DLT40 Survey
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 875:1
  • Journal article (peer-reviewed)abstract
    • We describe the gravitational-wave (GW) follow-up strategy and subsequent results of the Distance Less Than 40 Mpc survey (DLT40) during the second science run (O2) of the Laser Interferometer Gravitational-wave Observatory and Virgo collaboration (LVC). Depending on the information provided in the GW alert together with the localization map sent by the LVC, DLT40 would respond promptly to image the corresponding galaxies selected by our ranking algorithm in order to search for possible electromagnetic (EM) counterparts in real time. During the LVC O2 run, DLT40 followed 10 GW triggers, observing between similar to 20 and 100 galaxies within the GW localization area of each event. From this campaign, we identified two real transient sources within the GW localizations with an appropriate on-source time-one was an unrelated SN Ia (SN 2017cbv), and the other was the optical kilonova, AT 2017fgo/SSS17a/DLT17ck, associated with the binary neutron star (BNS) coalescence GW170817 (a.k.a gamma-ray burst GRB 170817A). We conclude with a discussion of the DLT40 survey's plans for the upcoming LVC O3 run, which include expanding our galaxy search fields out to D approximate to 65 Mpc to match the LVC's planned three-detector sensitivity for BNS mergers.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view