SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Courtin A) "

Search: WFRF:(Courtin A)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Montanari, D., et al. (author)
  • Pair neutron transfer in Ni-60+Sn-116 probed via gamma-particle coincidences
  • 2016
  • In: PHYSICAL REVIEW C. - 2469-9985. ; 93:5
  • Journal article (peer-reviewed)abstract
    • We performed a gamma-particle coincidence experiment for the Ni-60 + Sn-116 system to investigate whether the population of the two-neutron pickup channel leading to Ni-62 is mainly concentrated in the ground-state transition, as has been found in a previous work [D. Montanari et al., Phys. Rev. Lett. 113, 052501 (2014)]. The experiment has been performed by employing the PRISMA magnetic spectrometer coupled to the Advanced Gamma Tracking Array (AGATA) demonstrator. The strength distribution of excited states corresponding to the inelastic, one-and two-neutron transfer channels has been extracted. We found that in the two-neutron transfer channel the strength to excited states corresponds to a fraction (less than 24%) of the total, consistent with the previously obtained results that the 2n channel is dominated by the ground-state to ground-state transition.
  •  
3.
  • Mousis, O., et al. (author)
  • Scientific rationale for Saturn's in situ exploration
  • 2014
  • In: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 104, s. 29-47
  • Journal article (peer-reviewed)abstract
    • Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases' abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.
  •  
4.
  • Gjestvang, D., et al. (author)
  • Examination of how properties of a fissioning system impact isomeric yield ratios of the fragments
  • 2023
  • In: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 108:6
  • Journal article (peer-reviewed)abstract
    • The population of isomeric states in the prompt decay of fission fragments-so-called isomeric yield ratios (IYRs)-is known to be sensitive to the angular momentum J that the fragment emerged with, and may therefore contain valuable information on the mechanism behind the fission process. In this work, we investigate how changes in the fissioning system impact the measured IYRs of fission fragments to learn more about what parameters affect angular momentum generation. To enable this, a new technique for measuring IYRs is first demonstrated. It is based on the time of arrival of discrete gamma rays, and has the advantage that it enables the study of the IYR as a function of properties of the partner nucleus. This technique is used to extract the IYR of 134Te, strongly populated in actinide fission, from the three different fissioning systems: 232Th(n, f), 238U(n, f), at two different neutron energies, as well as 252Cf(sf). The impacts of changing the fissioning system, the compound nuclear excitation energy, the minimum J of the binary partner, and the number of neutrons emitted on the IYR of 134Te are determined. The decay code TALYS is used in combination with the fission simulation code FREYA to calculate the primary fragment angular momentum from the IYR. We find that the IYR of 134Te has a slope of 0.004 +/- 0.002 with increase in compound nucleus (CN) mass. When investigating the impact on the IYR of increased CN excitation energy, we find no change with an energy increase similar to the difference between thermal and fast fission. By varying the mass of the partner fragment emerging with 134Te, it is revealed that the IYR of 134Te is independent of the total amount of prompt neutrons emitted from the fragment pair. This indicates that neutrons carry minimal angular momentum away from the fission fragments. Comparisons with the FREYA+TALYS simulations reveal that the average angular momentum in 134Te following 238U(n, f) is 6.0 h over bar . This is not consistent with the value deduced from recent CGMF calculations. Finally, the IYR sensitivity to the angular momentum of the primary fragment is discussed. These results are not only important to help understanding the underlying mechanism in nuclear fission, but can also be used to constrain and benchmark fission models, and are relevant to the gamma -ray heating problem of reactors.
  •  
5.
  • Oinonen, M., et al. (author)
  • Non-analog beta decay of Rb-74
  • 2001
  • In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - 0370-2693. ; 511:2-4, s. 145-150
  • Journal article (peer-reviewed)abstract
    • The magnitude of the Coulomb mixing parameter delta (l)(IM) has been experimentally deduced, for the first time, for the B decay of Rb-74. Th, estimated magnitude is derived from the feeding of the non-analog first excited 0(+) state in Kr-74. The inferred upper Limit of 0.07% is small compared to theoretical predictions. The half-life was measured to be 64.90(9) ms.
  •  
6.
  • Schwarzer, M., et al. (author)
  • Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice
  • 2023
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 379:6634
  • Journal article (peer-reviewed)abstract
    • The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJLsustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.
  •  
7.
  • Elofsson, Ulla, et al. (author)
  • Adsorption studies of interaction between water-extractable nonstarch polysaccharides and prolamins in cereals
  • 2000
  • In: Cereal Chemistry. - 0009-0352. ; 77:5, s. 679-684
  • Journal article (peer-reviewed)abstract
    • Adsorption of cereal storage protein and nonstarch polysaccharides onto methylated silica surfaces, as measured by ellipsometry, was used to study possible interactions between those components. All fractions, rye secalin, wheat gliadin, rye arabinoxylan, and wheat arabinogalactan peptide, were surface- oxylan and wheat arabinogalactan peptide on top of gliadin and secalin, respectively, indicated that an interaction occurred. As ionic strength and pH influenced both the adsorption and the interaction of the components studied, these phenomena are believed to be of electrostatic nature.
  •  
8.
  • Aevarsson, Arnthór, et al. (author)
  • Going to extremes - a metagenomic journey into the dark matter of life
  • 2021
  • In: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 1574-6968. ; 368:12
  • Research review (peer-reviewed)abstract
    • The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.
  •  
9.
  • Arridge, Christopher S., et al. (author)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Journal article (peer-reviewed)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
10.
  • Damen, Bram, et al. (author)
  • Consumption of breads containing in situ-produced arabinoxylan oligosaccharides alters gastrointestinal effects in healthy volunteers
  • 2012
  • In: Journal of Nutrition. - : Elsevier BV. - 1541-6100 .- 0022-3166. ; 142:3, s. 7-470
  • Journal article (peer-reviewed)abstract
    • Arabinoxylan oligosaccharides (AXOS) are studied as food compounds with prebiotic potential. Here, the impact of consumption of breads with in situ-produced AXOS on intestinal fermentation and overall gastrointestinal characteristics was evaluated in a completely randomized, double-blind, controlled, cross-over study. Twenty-seven healthy volunteers consumed 180 g of wheat/rye bread with or without in situ-produced AXOS (WR(+) and WR(-), respectively) daily for 3 wk. Consumption of WR(+) corresponded to an AXOS intake of ~2.14 g/d. Refined wheat flour bread without AXOS (W(-)) (180 g/d) was provided during the 3-wk run-in and wash-out periods. At the end of each treatment period, participants collected urine for 48 h as well as a feces sample. Additionally, all participants completed a questionnaire about stool characteristics and gastrointestinal symptoms during the last week of each period. Urinary phenol and p-cresol excretions were significantly lower after WR(+) intake compared to WR(-). Consumption of WR(+) significantly increased fecal total SCFA concentrations compared to intake of W(-). The effect of WR(+) intake was most pronounced on butyrate, with levels 70% higher than after consumption of W(-) in the run-in or wash-out period. Consumption of WR(+) tended to selectively increase the fecal levels of bifidobacteria (P = 0.06) relative to consumption of W(-). Stool frequency increased significantly after intake of WR(+) compared to WR(-). In conclusion, consumption of breads with in situ-produced AXOS may favorably modulate intestinal fermentation and overall gastrointestinal properties in healthy humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view