SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cracraft J) "

Search: WFRF:(Cracraft J)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Feng, Shaohong, et al. (author)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Journal article (peer-reviewed)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
3.
  •  
4.
  • Oliveros, Carl H., et al. (author)
  • Earth history and the passerine superradiation
  • 2019
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:16, s. 7916-7925
  • Journal article (peer-reviewed)abstract
    • Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyper-diverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.
  •  
5.
  • Wright, Gillian, et al. (author)
  • The Mid-infrared Instrument for JWST and Its In-flight Performance
  • 2023
  • In: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 135:1046
  • Journal article (peer-reviewed)abstract
    • The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.
  •  
6.
  • Ferreira, M., et al. (author)
  • Evidence for mtDNA capture in the jacamar Galbula leucogastra/chalcothorax species-complex and insights on the evolution of white-sand ecosystems in the Amazon basin
  • 2018
  • In: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903. ; 129, s. 149-157
  • Journal article (peer-reviewed)abstract
    • Jacamar species occur throughout Amazonia, with most species occupying forested habitats. One species-complex, Galbula leucogastra/chalcothorax, is associated to white sand ecosystems (WSE). Previous studies of WSE bird species recovered shallow genetic structure in mtDNA coupled with signs of gene flow among WSE patches. Here, we characterize diversification of the G. leucogastra/chalcothorax species-complex with dense sampling across its distribution using mitochondrial and genomic (Ultraconserved Elements, UCEs) DNA sequences. We performed concatenated likelihood and Bayesian analysis, as well as a species-tree analysis using *BEAST, to establish the phylogenetic relationships among populations. The mtDNA results recovered at least six geographically-structured lineages, with G. chalcothorax embedded within lineages of G. leucogastra. In contrast, both concatenated and species-tree analyses of UCE data recovered G. chalcothorax as sister to all G. leucogastra lineages. We hypothesize that the mitochondrial genome of one of the G. leucogastra lineage (Madeira) was captured into G. chalcothorax in the past. We discuss how WSE evolution and the coevolution of mtDNA and nuclear genes might have played a role in this apparently rare event.
  •  
7.
  • Jarvis, Erich D., et al. (author)
  • Phylogenomic analyses data of the avian phylogenomics project
  • 2015
  • In: GigaScience. - : Oxford University Press (OUP). - 2047-217X. ; 4
  • Journal article (peer-reviewed)abstract
    • Background: Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. Findings: Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. Conclusions: The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.
  •  
8.
  • Jarvis, Erich D., et al. (author)
  • Whole-genome analyses resolve early branches in the tree of life of modern birds
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1320-1331
  • Journal article (peer-reviewed)abstract
    • To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8
Type of publication
journal article (8)
Type of content
peer-reviewed (7)
other academic/artistic (1)
Author/Editor
Cracraft, Joel (5)
Faircloth, Brant C. (4)
Braun, Edward L. (4)
Sheldon, Frederick H ... (4)
Haussler, David (3)
Edwards, Scott V. (3)
show more...
Jarvis, Erich D. (3)
Zhang, Guojie (3)
Suh, Alexander (3)
Ryder, Oliver A. (3)
da Fonseca, Rute R. (3)
Brumfield, Robb T. (3)
Houde, Peter (3)
Mirarab, Siavash (3)
Barker, F. Keith (3)
Green, Richard E. (2)
Ellegren, Hans (2)
Liu, Liang (2)
Ho, Simon Y. W. (2)
Glenn, Travis C. (2)
Sicheritz-Ponten, Th ... (2)
Petersen, Bent (2)
Gilbert, M. Thomas P ... (2)
Aleixo, A. (2)
Zhou, Qi (2)
Diekhans, Mark (2)
Wang, Jian (2)
Li, Bo (2)
Warren, Wesley C. (2)
Shapiro, Beth (2)
Warnow, Tandy (2)
Graves, Gary R. (2)
Fjeldsa, Jon (2)
Yang, Huanming (2)
Nabholz, Benoit (2)
Joseph, Leo (2)
Hosner, Peter A. (2)
Claramunt, Santiago (2)
Bunce, Michael (2)
Jonsson, Knud Andrea ... (2)
Prosdocimi, Francisc ... (2)
Braun, Michael J. (2)
Wirthlin, Morgan (2)
McGuire, Jimmy A. (2)
Aleixo, Alexandre (2)
Mello, Claudio V. (2)
Rahbek, Carsten (2)
Cracraft, J (2)
Howard, Jason T. (2)
Stamatakis, Alexandr ... (2)
show less...
University
Uppsala University (4)
Swedish Museum of Natural History (3)
Swedish University of Agricultural Sciences (2)
University of Gothenburg (1)
Stockholm University (1)
Lund University (1)
show more...
Chalmers University of Technology (1)
show less...
Language
English (8)
Research subject (UKÄ/SCB)
Natural sciences (7)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view