SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dal Monte Olga) "

Search: WFRF:(Dal Monte Olga)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mazza, Alessandro, et al. (author)
  • Beyond alpha-band: The neural correlate of creative thinking
  • 2023
  • In: Neuropsychologia. - : Elsevier. - 0028-3932 .- 1873-3514. ; 179
  • Journal article (peer-reviewed)abstract
    • The compound nature of creativity entails the interplay of multiple cognitive processes, making it difficult to attribute creativity to a single neural signature. Divergent thinking paradigms, widely adopted to investigate creative production, have highlighted the key role of specific mental operations subserving creativity, such as inhibition of external stimuli, loose semantic associations, and mental imagery. Neurophysiological studies have typically shown a high alpha rhythm synchronization when individuals are engaged in creative ideation. Also, oculomotor activity and pupil diameter have been proposed as useful indicators of mental operations involved in such a thinking process. The goal of this study was to investigate whether beyond alpha-band activity other higher frequency bands, such as beta and gamma, may subserve divergent and convergent thinking and whether those could be associated with a different gaze bias and pupil response during ideas generation. Implementing a within-subjects design we collected behavioral measures, neural activity, gaze patterns, and pupil dilation while participants performed a revised version of the Alternative Uses Task, in which divergent thinking is contrasted to convergent thinking. As expected, participants took longer to generate creative ideas as compared to common ones. Interestingly, during divergent thinking participants displayed alpha synchronization along with beta and gamma desynchronization, more pronounced leftward gaze shift, and greater pupil dilation. During convergent thinking, an opposite pattern was observed: desynchronization in alpha and an increase in beta and gamma rhythm, along with a reduction of leftward gaze shift and greater pupil constriction. The present study uncovered specific neural dynamics and physiological patterns during idea generation, providing novel insight into the complex physiological signature of creative production.
  •  
2.
  • Rostami, Elham, 1979-, et al. (author)
  • BDNF polymorphism predicts general intelligence after penetrating traumatic brain injury
  • 2011
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:11, s. e27389-
  • Journal article (peer-reviewed)abstract
    • Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derivedneurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While thereare many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decisionmaking,occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcomefollowing traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism oncognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. Wegenotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injuredcontrols (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces QualificationTest (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, andPhase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantlyassociated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II timepoint, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores,independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. Thesedata indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying theunderlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect ofpost-traumatic cognitive recovery.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view