SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dallilar Y.) "

Search: WFRF:(Dallilar Y.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Papitto, A., et al. (author)
  • Pulsating in Unison at Optical and X-Ray Energies : Simultaneous High Time Resolution Observations of the Transitional Millisecond Pulsar PSR J1023+0038
  • 2019
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 882:2
  • Journal article (peer-reviewed)abstract
    • PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution observational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (Telescopio Nazionale Galileo, Nordic Optical Telescope, Telescopi Joan Oro), X-ray (XMM-Newton, NuSTAR, NICER), infrared (Gran Telescopio Canarias), and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high-intensity mode in which the source spends similar to 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, optical and X-ray pulses were emitted within a few kilometers and had similar pulse shapes and distributions of the pulsed flux density compatible with a power-law relation F-nu proportional to nu(-0.7) connecting the optical and the 0.3-45 keV X-ray band. Optical pulses were also detected during flares with a pulsed flux reduced by one-third with respect to the high mode; the lack of a simultaneous detection of X-ray pulses is compatible with the lower photon statistics. We show that magnetically channeled accretion of plasma onto the surface of the neutron star cannot account for the optical pulsed luminosity (similar to 10(31) erg s(-1)). On the other hand, magnetospheric rotation-powered pulsar emission would require an extremely efficient conversion of spin-down power into pulsed optical and X-ray emission. We then propose that optical and X-ray pulses are instead produced by synchrotron emission from the intrabinary shock that forms where a striped pulsar wind meets the accretion disk, within a few light cylinder radii away, similar to 100 km, from the pulsar.
  •  
2.
  • Shahbaz, T., et al. (author)
  • Evidence for hot clumpy accretion flow in the transitional millisecond pulsar PSR J1023+0038
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 477:1, s. 566-577
  • Journal article (peer-reviewed)abstract
    • We present simultaneous optical and near-infrared (IR) photometry of the millisecond pulsar PSR J1023+0038 during its low-mass X-ray binary phase. The r'- and Ks-band light curves show rectangular, flat-bottomed dips, similar to the X-ray mode-switching (active-passive state transitions) behaviour observed previously. The cross-correlation function (CCF) of the optical and near-IR data reveals a strong, broad negative anticorrelation at negative lags, a broad positive correlation at positive lags, with a strong, positive narrow correlation superimposed. The shape of the CCF resembles the CCF of black hole X-ray binaries but the time-scales are different. The features can be explained by reprocessing and a hot accretion flow close to the neutron star's magnetospheric radius. The optical emission is dominated by the reprocessed component, whereas the near-IR emission contains the emission from plasmoids in the hot accretion flow and a reprocessed component. The rapid active-passive state transition occurs when the hot accretion flowmaterial is channelled on to the neutron star and is expelled from its magnetosphere. During the transition the optical reprocessing component decreases resulting in the removal of a blue spectral component. The accretion of clumpy material through the magnetic barrier of the neutron star produces the observed near-IR/optical CCF and variability. The dip at negative lags corresponds to the suppression of the near-IR synchrotron component in the hot flow, whereas the broad positive correlation at positive lags is driven by the increased synchrotron emission of the outflowing plasmoids. The narrow peak in the CCF is due to the delayed reprocessed component, enhanced by the increased X-ray emission.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view