SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Daly Sean) "

Search: WFRF:(Daly Sean)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Baines, Donna, et al. (author)
  • But where's the body? Bodies, time, money, and the political economy of post-pandemic field research
  • In: Qualitative Research. - 1741-3109.
  • Journal article (peer-reviewed)abstract
    • Since the pandemic, field work has been transformed by shifts in the political economy affecting the material conditions underpinning research. In this research note, a research team considers their challenges and learning in completing field studies conducted in 2022, including intensified strains on time, money, researchers’ bodies, and risks associated with illness and infection spread. We argue that a neoliberal “research super-hero” norm operates within the research community, rooted in a conception of high productivity that mingles uneasily, for many researchers, with feminist, anti-racist, and anti-colonial social justice aims and responsibilities. Our 2022 fieldwork experience led us to notice how this norm has circulated within our explicitly feminist research team and nudged us to challenge it, while raising questions about how a “research-worker” norm can best be supported.
  •  
2.
  • Dar, Pe'er, et al. (author)
  • Cell-free DNA screening for prenatal detection of 22q11.2 deletion syndrome.
  • 2022
  • In: American journal of obstetrics and gynecology. - : Elsevier BV. - 1097-6868 .- 0002-9378. ; 227:1
  • Journal article (peer-reviewed)abstract
    • Prenatal screening has historically focused primarily on detection of fetal aneuploidies. Cell-free DNA (cfDNA) now enables noninvasive screening for subchromosomal copy number variants, including 22q11.2 deletion syndrome (22q11.2DS or DiGeorge syndrome), which is the most common microdeletion and a leading cause of congenital heart defects and neurodevelopmental delay. Although smaller studies have demonstrated the feasibility of screening for 22q11.2DS, large cohort studies with postnatal confirmatory testing to assess test performance have not been reported.To assess the performance of SNP-based cfDNA prenatal screening for detection of 22q11.2DS.Patients who had SNP-based cfDNA prenatal screening for 22q11.2DS were prospectively enrolled at 21 centers in 6 countries. Prenatal or newborn DNA samples were requested in all cases for genetic confirmation with chromosomal microarray. The primary outcome was sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of cfDNA for detection of all deletions, including the classical deletion and nested deletions that are ≥500kb, in the 22q11.2 low copy repeat A-D region. Secondary outcomes included the prevalence of 22q11.2DS and performance of an updated cfDNA algorithm that was evaluated blinded to pregnancy outcome.Of 20,887 women enrolled, genetic outcome was available in 18,289 (87.6%). Twelve 22q11.2DS cases were confirmed in the cohort, including five (41.7%) nested deletions, yielding a prevalence of 1:1524. In the total cohort, cfDNA reported 17,976 (98.3%) as low risk for 22q11.2DS and 38 (0.2%) as high-risk; 275 (1.5%) were non-reportable. Overall, 9 of 12 cases of 22q11.2 were detected, yielding a sensitivity of 75.0% (95% CI: 42.8, 94.5); specificity of 99.84% (95% CI: 99.77, 99.89); PPV of 23.7% (95% CI: 11.44, 40.24) and NPV of 99.98% (95% CI: 99.95, 100). None of the cases with a non-reportable result was diagnosed with 22q11.2DS. The updated algorithm detected 10/12 cases (83.3%; 95% CI: 51.6-97.9) with a lower false positive rate (0.05% vs. 0.16%, p<0.001) and a PPV of 52.6% (10/19; 95% CI 28.9-75.6).Noninvasive cfDNA prenatal screening for 22q11.2DS can detect most affected cases, including smaller nested deletions, with a low false positive rate.
  •  
3.
  • Ding, Yuan C, et al. (author)
  • A nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers
  • 2012
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 21:8, s. 1362-1370
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were associated with breast cancer risk in a larger cohort of BRCA1 and BRCA2 mutation carriers.METHODS: IRS1 rs1801123, rs1330645, and rs1801278 were genotyped in samples from 36 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analyzed by a retrospective cohort approach modeling the associations with breast and ovarian cancer risks simultaneously. Analyses were stratified by BRCA1 and BRCA2 status and mutation class in BRCA1 carriers.RESULTS: Rs1801278 (Gly972Arg) was associated with ovarian cancer risk for both BRCA1 (HR, 1.43; 95% confidence interval (CI), 1.06-1.92; P = 0.019) and BRCA2 mutation carriers (HR, 2.21; 95% CI, 1.39-3.52, P = 0.0008). For BRCA1 mutation carriers, the breast cancer risk was higher in carriers with class II mutations than class I mutations (class II HR, 1.86; 95% CI, 1.28-2.70; class I HR, 0.86; 95%CI, 0.69-1.09; P(difference), 0.0006). Rs13306465 was associated with ovarian cancer risk in BRCA1 class II mutation carriers (HR, 2.42; P = 0.03).CONCLUSION: The IRS1 Gly972Arg single-nucleotide polymorphism, which affects insulin-like growth factor and insulin signaling, modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers and breast cancer risk in BRCA1 class II mutation carriers.Impact: These findings may prove useful for risk prediction for breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers.
  •  
4.
  • Koletzko, Berthold, et al. (author)
  • Should formula for infants provide arachidonic acid along with DHA? : A position paper of the European Academy of Paediatrics and the Child Health Foundation
  • 2020
  • In: American Journal of Clinical Nutrition. - : OXFORD UNIV PRESS. - 0002-9165 .- 1938-3207. ; 111:1, s. 10-16
  • Journal article (peer-reviewed)abstract
    • Recently adopted regulatory standards on infant and follow-on formula for the European Union stipulate that from February 2020 onwards, all such products marketed in the European Union must contain 20-50 mg omega-3 DHA (22:6n-3) per 100 kcal, which is equivalent to about 0.5-1% of fatty acids (FAs) and thus higher than typically found in human milk and current infant formula products, without the need to also include co-6 arachidonic acid (AA; 20:4n-6). This novel concept of infant formula composition has given rise to concern and controversy because there is no accountable evidence on its suitability and safety in healthy infants. Therefore, international experts in the field of infant nutrition were invited to review the state of scientific research on DHA and AA, and to discuss the questions arising from the new European regulatory standards. Based on the available information, we recommend that infant and follow-on formula should provide both DHA and AA. The DHA should equal at least the mean content in human milk globally (0.3% of FAs) but preferably reach 0.5% of FAs. Although optimal AA intake amounts remain to be defined, we strongly recommend that AA should be provided along with DHA. At amounts of DHA in infant formula up to similar to 0.64%, AA contents should at least equal the DHA contents. Further well-designed clinical studies should evaluate the optimal intakes of DHA and AA in infants at different ages based on relevant outcomes.
  •  
5.
  • Lindblad-Toh, Kerstin, et al. (author)
  • Genome sequence, comparative analysis and haplotype structure of the domestic dog.
  • 2005
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 438:7069, s. 803-19
  • Journal article (peer-reviewed)abstract
    • Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view