SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(De Jong Eiko K.) "

Search: WFRF:(De Jong Eiko K.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Jong, Sarah, et al. (author)
  • Effect of rare coding variants in the CFI gene on Factor I expression levels
  • 2020
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 29:14, s. 2313-2324
  • Journal article (peer-reviewed)abstract
    • Factor I (FI) is one of the main inhibitors of complement activity, and numerous rare coding variants have been reported in patients with age-related macular degeneration, atypical hemolytic uremic syndrome and C3 glomerulopathy. Since many of these variants are of unknown clinical significance, this study aimed to determine the effect of rare coding variants in the complement factor I (CFI) gene on FI expression. We measured FI levels in plasma samples of carriers of rare coding variants and in vitro in the supernatants of epithelial cells expressing recombinant FI. FI levels were measured in 177 plasma samples of 155 individuals, carrying 24 different rare coding variants in CFI. In carriers of the variants p.Gly119Arg, p.Leu131Arg, p.Gly188Ala and c.772G>A (r.685_773del), significantly reduced FI plasma levels were detected. Furthermore, recombinant FI expression levels were determined for 126 rare coding variants. Of these variants 68 (54%) resulted in significantly reduced FI expression in supernatant compared to wildtype (WT). The recombinant protein expression levels correlated significantly with the FI level in plasma of carriers of CFI variants. In this study, we performed the most comprehensive FI expression level analysis of rare coding variants in CFI to date. More than half of CFI variants lead to reduced FI expression, which might impair complement regulation in vivo. Our study will aid the interpretation of rare coding CFI variants identified in clinical practice, which is in particular important in light of patient inclusion in ongoing clinical trials for CFI gene supplementation in AMD.
  •  
2.
  • Kremlitzka, Mariann, et al. (author)
  • Functional analyses of rare genetic variants in complement component C9 identified in patients with age-related macular degeneration
  • 2018
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 27:15, s. 2678-2688
  • Journal article (peer-reviewed)abstract
    • Age-related macular degeneration (AMD) is a progressive disease of the central retina and the leading cause of irreversible vision loss in the western world. The involvement of abnormal complement activation in AMD has been suggested by association of variants in genes encoding complement proteins with disease development. A low-frequency variant (p.P167S) in the complement component C9 (C9) gene was recently shown to be highly associated with AMD; however, its functional outcome remains largely unexplored. In this study, we reveal five novel rare genetic variants (p.M45L, p.F62S, p.G126R, p.T170I and p.A529T) in C9 in AMD patients, and evaluate their functional effects in vitro together with the previously identified (p.R118Wand p.P167S) C9 variants. Our results demonstrate that the concentration of C9 is significantly elevated in patients' sera carrying the p.M45L, p.F62S, p.P167S and p.A529T variants compared with non-carrier controls. However, no difference can be observed in soluble terminal complement complex levels between the carrier and non-carrier groups. Comparing the polymerization of the C9 variants we reveal that the p.P167S mutant spontaneously aggregates, while the other mutant proteins (except for C9 p.A529T) fail to polymerize in the presence of zinc. Altered polymerization of the p.F62S and p.P167S proteins associated with decreased lysis of sheep erythrocytes and adult retinal pigment epithelial-19 cells by carriers' sera. Our data suggest that the analyzed C9 variants affect only the secretion and polymerization of C9, without influencing its classical lytic activity. Future studies need to be performed to understand the implications of the altered polymerization of C9 in AMD pathology.
  •  
3.
  • Borné, Yan, et al. (author)
  • Complement C3 Associates With Incidence of Diabetes, but No Evidence of a Causal Relationship
  • 2017
  • In: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 102:12, s. 4477-4485
  • Journal article (peer-reviewed)abstract
    • Purpose: This study explored whether complement factor 3 (C3) in plasma is associated with incidence of diabetes in a population-based cohort. We also identified genetic variants related to C3 and explored whether C3 and diabetes share common genetic determinants.Methods: C3 was analyzed in plasma from 4368 nondiabetic subjects, 46 to 68 years old, from the Malmö Diet and Cancer Study. Incidence of diabetes was studied in relationship to C3 levels during 17.7± 4.4 years of follow-up. Genotypes associated with C3 were identified in a genome-wide association study. Diabetes Genetics Replication and Meta-Analysis and the European Genetic Database were used for in silico look-up.Results: In all, 538 (12.3%) subjects developed diabetes during 18 years of follow-up. High C3 was significantly associated with incidence of diabetes after risk factor adjustments (hazard ratio comparing 4th vs 1st quartile, 1.54 (95% confidence interval, 1.13 to 2.09; P = 0.005). C3 was associated with polymorphisms at the complement factor H locus (P < 10-8). However, no relationship with diabetes was observed for this locus. Another eight loci were associated with C3 with P < 10-5. One of them, the glucose kinase regulatory protein (GCKR) locus, has been previously associated with diabetes. The relationship between C3 levels and the GCKR locus was replicated in the European Genetic Database cohort.Conclusions: Plasma concentration of C3 is a risk marker for incidence of diabetes. The results suggest that this association could, in part, be explained by pleiotropic effects related to the GCKR gene.
  •  
4.
  • Geerlings, Maartje J., et al. (author)
  • The functional effect of rare variants in complement genes on C3b degradation in patients with age-related macular degeneration
  • 2017
  • In: JAMA Ophthalmology. - : American Medical Association (AMA). - 2168-6165. ; 135:1, s. 39-46
  • Journal article (peer-reviewed)abstract
    • IMPORTANCE In age-related macular degeneration (AMD), rare variants in the complement system have been described, but their functional consequences remain largely unexplored. OBJECTIVES To identify new rare variants in complement genes and determine the functional effect of identified variants on complement levels and complement regulation in serum samples from carriers and noncarriers. DESIGN, SETTING, AND PARTICIPANTS This study evaluated affected (n = 114) and unaffected (n = 60) members of 22 families with AMD and a case-control cohort consisting of 1831 unrelated patients with AMD and 1367 control individuals from the European Genetic Database from March 29, 2006, to April 26, 2013, in Nijmegen, the Netherlands, and Cologne, Germany. Exome sequencing data of families were filtered for rare variants in the complement factor H (CFH), complement factor I (CFI), complement C9 (C9), and complement C3 (C3) genes. The case-control cohort was genotyped with allele-specific assays. Serum samples were obtained from carriers of identified variants (n = 177) and age-matched noncarriers (n = 157). Serum concentrations of factor H (FH), factor I (FI), C9, and C3 were measured, and C3b degradation ability was determined. MAIN OUTCOMES AND MEASURES Association of rare variants in the CFH, CFI, C9, and C3 genes with AMD, serum levels of corresponding proteins, and C3b degradation ability of CFH and CFI variant carriers. RESULTS The 1831 unrelated patients with AMD had a mean (SD) age of 75.0 (9.4) years, and 60.5%were female. The 1367 unrelated control participants had a mean (SD) age of 70.4 (7.0), and 58.7%were female. All individuals were of European descent. Rare variants in CFH, CFI, C9, and C3 contributed to an increased risk of developing AMD (odds ratio, 2.04; 95%CI, 1.47-2.82; P < .001). CFI carriers had decreased median FI serum levels (18.2 μg/mL in Gly119Arg carriers and 16.2 μg/mL in Leu131Arg carriers vs 27.2 and 30.4 μg/mL in noncarrier cases and controls, respectively; both P < .001). Elevated C9 levels were observed in Pro167Ser carriers (10.7 μg/mL vs 6.6 and 6.1 μg/mL in noncarrier cases and controls, respectively; P < .001). The median FH serum levels were 299.4 μg/mL for CFH Arg175Gln and 266.3 μg/mL for CFH Ser193Leu carriers vs 302.4 and 283.0 μg/mL for noncarrier cases and controls, respectively. The median C3 serum levels were 943.2 μg/mL for C3 Arg161Trp and 946.7 μg/mL for C3 Lys155Gln carriers vs 874.0 and 946.7 μg/mL for noncarrier cases and controls, respectively. The FH and FI levels correlated with C3b degradation in noncarriers (R2 = 0.35 and R2 = 0.31, respectively; both P < .001). CONCLUSIONS AND RELEVANCE Reduced serum levels were associated with C3b degradation in carriers of CFI but not CFH variants, suggesting that CFH variants affect functional activity of FH rather than serum levels. Carriers of CFH (Arg175Gln and Ser193Leu) and CFI (Gly119Arg and Leu131Arg) variants have an impaired ability to regulate complement activation and may benefit more from complement-inhibiting therapy than patients with AMD in general.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view