SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(De Lisle Stephen) "

Search: WFRF:(De Lisle Stephen)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • De Lisle, Stephen P, et al. (author)
  • Climatic factors and species range position predict sexually antagonistic selection across taxa
  • 2018
  • In: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 373:1757
  • Journal article (peer-reviewed)abstract
    • Sex differences in selection are ubiquitous in sexually reproducing organisms. When the genetic basis of traits is shared between the sexes, such sexually antagonistic selection (SAS) creates a potential constraint on adaptive evolution. Theory and laboratory experiments suggest that environmental variation and the degree of local adaptation may all affect the frequency and intensity of SAS. Here, we capitalize on a large database of over 700 spatially or temporally replicated estimates of sex-specific phenotypic selection from wild populations, combined with data on microclimates and geographical range information. We performed a meta-analysis to test three predictions from SAS theory, that selection becomes more concordant between males and females: (1) in more stressful environments, (2) in more variable environments and (3) closer to the edge of the species' range. We find partial empirical support for all three predictions. Within-study analyses indicate SAS decreases in extreme environments, as indicated by a relationship with maximum temperature, minimum precipitation and evaporative potential (PET). Across studies, we found that the average level of SAS at high latitudes was lower, where environmental conditions are typically less stable. Finally, we found evidence for reduced SAS in populations that are far from the centre of their geographical range. However, and notably, we also found some evidence of reduced average strength of selection in these populations, which is in contrast to predictions from classical theoretical models on range limit evolution. Our results suggest that environmental lability and species range position predictably influence sex-specific selection and sexual antagonism in the wild.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
  •  
2.
  • De Lisle, Stephen P., et al. (author)
  • Complex community-wide consequences of consumer sexual dimorphism
  • 2022
  • In: Journal of Animal Ecology. - : John Wiley & Sons. - 0021-8790 .- 1365-2656. ; 91:5, s. 958-969
  • Journal article (peer-reviewed)abstract
    • Sexual dimorphism is a ubiquitous source of within-species variation, yet the community-level consequences of sex differences remain poorly understood. Here, we analyse a bitrophic model of two competing resource species and a sexually reproducing consumer species. We show that consumer sex differences in resource acquisition can have striking consequences for consumer-resource coexistence, abundance and dynamics. Under both direct interspecific competition and apparent competition between two resource species, sexual dimorphism in consumers' attack rates can mediate coexistence of the resource species, while in other cases can lead to exclusion when stable coexistence is typically expected. Slight sex differences in total resource acquisition also can reverse competitive outcomes and lead to density cycles. These effects are expected whenever both consumer sexes require different amounts or types of resources to reproduce. Our results suggest that consumer sexual dimorphism, which is common, has wide-reaching implications for the assembly and dynamics of natural communities.
  •  
3.
  • De Lisle, Stephen P., et al. (author)
  • Condition dependence and the paradox of missing plasticity costs
  • 2023
  • In: Evolution Letters. - : Oxford University Press. - 2056-3744. ; 7:2, s. 67-78
  • Journal article (peer-reviewed)abstract
    • Phenotypic plasticity plays a key role in adaptation to changing environments. However, plasticity is neither perfect nor ubiquitous, implying that fitness costs may limit the evolution of phenotypic plasticity in nature. The measurement of such costs of plasticity has proved elusive; decades of experiments show that fitness costs of plasticity are often weak or nonexistent. Here, we show that this paradox could potentially be explained by condition dependence. We develop two models differing in their assumptions about how condition dependence arises; both models show that variation in condition can readily mask costs of plasticity even when such costs are substantial. This can be shown simply in a model where plasticity itself evolves condition dependence, which would be expected if costly. Yet similar effects emerge from an alternative model where trait expression itself is condition-dependent. In this more complex model, the average condition in each environment and genetic covariance in condition across environments both determine when costs of plasticity can be revealed. Analogous to the paradox of missing trade-offs between life history traits, our models show that variation in condition can mask costs of plasticity even when costs exist, and suggest this conclusion may be robust to the details of how condition affects trait expression. Our models suggest that condition dependence can also account for the often-observed pattern of elevated plasticity costs inferred in stressful environments, the maintenance of genetic variance in plasticity, and provides insight into experimental and biological scenarios ideal for revealing a cost of phenotypic plasticity.
  •  
4.
  • De Lisle, Stephen P., et al. (author)
  • Extinction and the temporal distribution of macroevolutionary bursts
  • 2021
  • In: Journal of evolutionary biology. - Hoboken, New Jersey : Wiley. - 1010-061X .- 1420-9101. ; 34:2, s. 380-390
  • Journal article (peer-reviewed)abstract
    • Phenotypic evolution through deep time is slower than expected from microevolutionary rates. This is the paradox of stasis. Previous models suggest stasis occurs because populations track adaptive peaks that remain relatively stable on million-year intervals, raising the equally perplexing question of why these large changes are so rare. Here, we consider the possibility that peaks can move more rapidly than populations can adapt, resulting in extinction. We model peak movement with explicit population dynamics, parameterized with published microevolutionary estimates. Allowing extinction greatly increases the parameter space of peak movements that yield the appearance of stasis observed in real data through deep time. Extreme peak displacements, regardless of their frequency, will rarely result in an equivalent degree of trait evolution because of extinction. Thus, larger peak displacements will rarely be inferred using trait data from extant species or observed in fossil records. Our work highlights population ecology as an important contributor to macroevolutionary dynamics, presenting an alternative perspective on the paradox of stasis, where apparent constraint on phenotypic evolution in deep time reflects our restricted view of the subset of earth's lineages that were fortunate enough to reside on relatively stable peaks.
  •  
5.
  • De Lisle, Stephen P. (author)
  • Genotype × Environment interaction and the evolution of sexual dimorphism : Adult nutritional environment mediates selection and expression of sex-specific genetic variance in Drosophila melanogaster
  • 2024
  • In: Journal of Evolutionary Biology. - : Oxford University Press. - 1010-061X .- 1420-9101. ; 37:7, s. 770-778
  • Journal article (peer-reviewed)abstract
    • Sexual conflict plays a key role in the dynamics of adaptive evolution in sexually reproducing populations, and theory suggests an important role for variance in resource acquisition in generating or masking sexual conflict over fitness and life history traits. Here, I used a quantitative genetic genotype × environment experiment in Drosophila melanogaster to test the theoretical prediction that variance in resource acquisition mediates variation in sex-specific component fitness. Holding larval conditions constant, I found that adult nutritional environments characterized by high protein content resulted in reduced survival of both sexes and lower male reproductive success compared to an environment of lower protein content. Despite reduced mean fitness of both sexes in high protein environments, I found a sex∗treatment interaction for the relationship between resource acquisition and fitness; estimates of the adaptive landscape indicate males were furthest from their optimum resource acquisition level in high protein environments, and females were furthest in low protein environments. Expression of genetic variance in resource acquisition and survival was highest for each sex in the environment it was best adapted to, although the treatment effects on expression of genetic variance eroded in the path from resource acquisition to total fitness. Cross-sex genetic correlations were strongly positive for resource acquisition, survival, and total fitness and negative for mating success, although estimation error was high for all. These results demonstrate that environmental effects on resource acquisition can have predictable consequences for the expression of sex-specific genetic variance but also that these effects of resource acquisition can erode through life history.
  •  
6.
  • De Lisle, Stephen P., et al. (author)
  • Habitat partitioning during character displacement between the sexes
  • 2018
  • In: Biology letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 14:6
  • Journal article (peer-reviewed)abstract
    • Ecological differences between the sexes are often interpreted as evidence of within-species ecological character displacement (ECD), a hypothesis with almost no direct tests. Here, we experimentally test two predictions that are direct corollaries of ECD between the sexes, in a salamander. First, we find support for the prediction that each sex has a growth rate advantage in the aquatic microhabitat where it is most commonly found. Second, we test the prediction that selection for ECD in the breeding environment may affect partial migration out of this environment. We found that phenotype-dependent migration resulted in a shift in the phenotypic distribution across treatments, with the highest sexual dimorphism occurring among residents at high founding density, suggesting that migration and ECD can both be driven by competition. Our work illustrates how complex patterns of habitat partitioning evolve during ECD between the sexes and suggest ECD and partial migration can interact to effect both ecological dynamics and evolution of sexual dimorphism.
  •  
7.
  • De Lisle, Stephen P., et al. (author)
  • Interacting phenotypes and the coevolutionary process : Interspecific indirect genetic effects alter coevolutionary dynamics
  • 2022
  • In: Evolution. - : John Wiley & Sons. - 0014-3820 .- 1558-5646. ; 76:3, s. 429-444
  • Journal article (peer-reviewed)abstract
    • Coevolution occurs when species interact to influence one another's fitness, resulting in reciprocal evolutionary change. In many coevolving lineages, trait expression in one species is modified by the genotypes and phenotypes of the other, forming feedback loops reminiscent of models of intraspecific social evolution. Here, we adapt the theory of within-species social evolution, characterized by indirect genetic effects and social selection imposed by interacting individuals, to the case of interspecific interactions. In a trait-based model, we derive general expressions for multivariate evolutionary change in two species and the expected between-species covariance in evolutionary change when selection varies across space. We show that reciprocal interspecific indirect genetic effects can dominate the coevolutionary process and drive patterns of correlated evolution beyond what is expected from direct selection alone. In extreme cases, interspecific indirect genetic effects can lead to coevolution when selection does not covary between species or even when one species lacks genetic variance. Moreover, our model indicates that interspecific indirect genetic effects may interact in complex ways with cross-species selection to determine the course of coevolution. Importantly, our model makes empirically testable predictions for how different forms of reciprocal interactions contribute to the coevolutionary process.
  •  
8.
  • De Lisle, Stephen P., et al. (author)
  • On the standardization of fitness and traits in comparative studies of phenotypic selection
  • 2017
  • In: Evolution. - : Wiley. - 0014-3820. ; 71:10, s. 2313-2326
  • Journal article (peer-reviewed)abstract
    • Comparisons of the strength and form of phenotypic selection among groups provide a powerful approach for testing adaptive hypotheses. A central and largely unaddressed issue is how fitness and phenotypes are standardized in such studies; standardization across or within groups can qualitatively change conclusions whenever mean fitness differs between groups. We briefly reviewed recent relevant literature, and found that selection studies vary widely in their scale of standardization, but few investigators motivated their rationale for chosen standardization approaches. Here, we propose that the scale at which fitness should be relativized should reflect whether selection is likely to be hard or soft; that is, the scale at which populations (or hypothetical populations in the case of a contrived experiment) are regulated. We argue that many comparative studies of selection are implicitly or explicitly focused on soft selection (i.e., frequency and density-dependent selection). In such studies, relative fitness should preferably be calculated using within-group means, although this approach is taken only occasionally. Related difficulties arise for the standardization of phenotypes. The appropriate scale at which standardization should take place depends on whether groups are considered to be fixed or random. We emphasize that the scale of standardization is a critical decision in empirical studies of selection that should always warrant explicit justification.
  •  
9.
  • De Lisle, Stephen P. (author)
  • Peak shifts and extinction under sex-specific selection
  • 2021
  • In: Biology letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 17:10
  • Journal article (peer-reviewed)abstract
    • A well-known property of sexual selection combined with a cross-sex genetic correlation (rmf) is that it can facilitate a peak shift on the adaptive landscape. How do these diversifying effects of sexual selection + rmf balance with the constraints imposed by such sexual antagonism, to affect the macroevolution of sexual dimorphism? Here, I extend existing quantitative genetic models of evolution on complex adaptive landscapes. Beyond recovering classical predictions for the conditions promoting a peak shift, I show that when rmf is moderate to strong, relatively weak sexual selection is required to induce a peak shift in males only. Increasing the strength of sexual selection leads to a sexually concordant peak shift, suggesting that macroevolutionary rates of sexual dimorphism may be largely decoupled from the strength of within-population sexual selection. Accounting explicitly for demography further reveals that sex-specific peak shifts may be more likely to be successful than concordant shifts in the face of extinction, especially when natural selection is strong. An overarching conclusion is that macroevolutionary patterns of sexual dimorphism are unlikely to be readily explained by within-population estimates of selection or constraint alone.
  •  
10.
  • De Lisle, Stephen P., et al. (author)
  • Phenotypic plasticity is aligned with phenological adaptation on both micro- and macroevolutionary timescales
  • 2022
  • In: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 25:4, s. 790-801
  • Journal article (peer-reviewed)abstract
    • In seasonally variable environments, phenotypic plasticity in phenology may be critical for adaptation to fluctuating environmental conditions. Using an 18-generation longitudinal dataset from natural damselfly populations, we show that phenology has strongly advanced. Individual fitness data suggest this is likely an adaptive response towards a temperature-dependent optimum. A laboratory experiment revealed that developmental plasticity qualitatively matches the temperature dependence of selection, partially explaining observed advance in phenology. Expanding our analysis to the macroevolutionary level, we use a database of over 1-million occurrence records and spatiotemporally matched temperature data from 49 Swedish Odonate species to infer macroevolutionary dynamics of phenology. Phenological plasticity was more closely aligned with adaptation for species that have recently colonised northern latitudes, but with higher phenological mismatch at lower latitudes. Our results show that phenological plasticity plays a key role in microevolutionary dynamics within a single species, and such plasticity may have facilitated post-Pleistocene range expansion in this insect clade.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view