SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(De Vadder Filipe) "

Search: WFRF:(De Vadder Filipe)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • De Vadder, Filipe, et al. (author)
  • Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks
  • 2018
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 115:25, s. 6458-6463
  • Journal article (peer-reviewed)abstract
    • The enteric nervous system (ENS) is crucial for essential gastrointestinal physiologic functions such as motility, fluid secretion, and blood flow. The gut is colonized by trillions of bacteria that regulate host production of several signaling molecules including serotonin (5-HT) and other hormones and neurotransmitters. Approximately 90% of 5-HT originates from the intestine, and activation of the 5-HT4 receptor in the ENS has been linked to adult neurogenesis and neuroprotection. Here, we tested the hypothesis that the gut micro-biota could induce maturation of the adult ENS through release of 5-HT and activation of 5-HT4 receptors. Colonization of germ-free mice with a microbiota from conventionally raised mice modified the neuroanatomy of the ENS and increased intestinal transit rates, which was associated with neuronal and mucosal 5-HT production and the proliferation of enteric neuronal progenitors in the adult intestine. Pharmacological modulation of the 5-HT4 receptor, as well as depletion of endogenous 5-HT, identified a mechanistic link between the gut microbiota and maturation of the adult ENS through the release of 5-HT and activation of the 5-HT4 receptor. Taken together, these findings show that the microbiota modulates the anatomy of the adult ENS in a 5-HT-dependent fashion with concomitant changes in intestinal transit.
  •  
2.
  • De Vadder, Filipe, et al. (author)
  • Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits
  • 2014
  • In: Cell. - : Elsevier BV. - 0092-8674. ; 156:1/2, s. 84-96
  • Journal article (peer-reviewed)abstract
    • Soluble dietary fibers promote metabolic benefits on body weight and glucose control, but underlying mechanisms are poorly understood. Recent evidence indicates that intestinal gluconeogenesis (IGN) has beneficial effects on glucose and energy homeostasis. Here, we show that the short-chain fatty acids (SCFAs) propionate and butyrate, which are generated by fermentation of soluble fiber by the gut microbiota, activate IGN via complementary mechanisms. Butyrate activates IGN gene expression through a cAMP-dependent mechanism, while propionate, itself a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit involving the fatty acid receptor FFAR3. The metabolic benefits on body weight and glucose control induced by SCFAs or dietary fiber in normal mice are absent in mice deficient for IGN, despite similar modifications in gut microbiota composition. Thus, the regulation of IGN is necessary for the metabolic benefits associated with SCFAs and soluble fiber.
  •  
3.
  • De Vadder, Filipe, et al. (author)
  • Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis
  • 2016
  • In: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 24:1, s. 151-157
  • Journal article (peer-reviewed)abstract
    • Beneficial effects of dietary fiber on glucose and energy homeostasis have long been described, focusing mostly on the production of short-chain fatty acids by the gut commensal bacteria. However, bacterial fermentation of dietary fiber also produces large amounts of succinate and, to date, no study has focused on the role of succinate on host metabolism. Here, we fed mice a fiber-rich diet and found that succinate was the most abundant carboxylic acid in the cecum. Dietary succinate was identified as a substrate for intestinal gluconeogenesis (IGN), a process that improves glucose homeostasis. Accordingly, dietary succinate improved glucose and insulin tolerance in wild-type mice, but those effects were absent in mice deficient in IGN. Conventional mice colonized with the succinate producer Prevotella copri exhibited metabolic benefits, which could be related to succinate-activated IGN. Thus, microbiota-produced succinate is a previously unsuspected bacterial metabolite improving glycemic control through activation of IGN.
  •  
4.
  • Koh, Ara, et al. (author)
  • From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites
  • 2016
  • In: Cell. - : Elsevier BV. - 0092-8674. ; 165:6, s. 1332-1345
  • Journal article (peer-reviewed)abstract
    • A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
  •  
5.
  • Kovatcheva-Datchary, Petia, et al. (author)
  • Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella
  • 2015
  • In: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 22:6, s. 971-982
  • Journal article (peer-reviewed)abstract
    • The gut microbiota plays an important role in human health by interacting with host diet, but there is substantial inter-individual variation in the response to diet. Here we compared the gut microbiota composition of healthy subjects who exhibited improved glucose metabolism following 3-day consumption of barley kernel-based bread (BKB) with those who responded least to this dietary intervention. The Prevotella/Bacteroides ratio was higher in responders than non-responders after BKB. Metagenomic analysis showed that the gut microbiota of responders was enriched in Prevotella copri and had increased potential to ferment complex polysaccharides after BKB. Finally, germ-free mice transplanted with microbiota from responder human donors exhibited improved glucose metabolism and increased abundance of Prevotella and liver glycogen content compared with germ-free mice that received non-responder microbiota. Our findings indicate that Prevotella plays a role in the BKB-induced improvement in glucose metabolism observed in certain individuals, potentially by promoting increased glycogen storage.
  •  
6.
  • Lee, Ying Shiuan, et al. (author)
  • Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production
  • 2016
  • In: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 5:4, s. 263-270
  • Journal article (peer-reviewed)abstract
    • Objective: Insulin-like peptide 5 (INSL5) is a recently identified gut hormone that is produced predominantly by L-cells in the colon, but its function is unclear. We have previously shown that colonic expression of the gene for the L-cell hormone GLP-1 is high in mice that lack a microbiota and thus have energy-deprived colonocytes. Our aim was to investigate if energy deficiency also affected colonic Insl5 expression and to identify a potential role of INSL5. Methods: We analyzed colonic Insl5 expression in germ-free (GF), conventionally raised (CONV-R), conventionalized (CONV-D) and antibiotic-treated mice, and also assessed the effect of dietary changes on colonic Insl5 expression. In addition, we characterized the metabolic phenotype of Insl5-/- mice. Results: We showed that colonic Insl5 expression was higher in GF and antibiotic-treated mice than in CONV-R mice, whereas Insl5 expression in the brain was higher in CONV-R versus GF mice. We also observed that colonic Insl5 expression was suppressed by increasing the energy supply in GF mice by colonization or high-fat feeding. We did not observe any differences in food intake, gut transit or oral glucose tolerance between Insl5-/- and wild-type mice. However, we showed impaired intraperitoneal glucose tolerance in Insl5-/- mice. We also observed improved insulin tolerance and reduced hepatic glucose production in Insl5-/- mice. Conclusions: We have shown that colonic Insl5 expression is regulated by the gut microbiota and energy availability. We propose that INSL5 is a hormone that could play a role in promoting hepatic glucose production during periods of energy deprivation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view