SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(De lange Elizabeth C.M.) "

Search: WFRF:(De lange Elizabeth C.M.)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lawrenson, Kate, et al. (author)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
2.
  • 2019
  • Journal article (peer-reviewed)
  •  
3.
  • Bengtsson, Jörgen, 1976- (author)
  • Developmental Aspects of Drug Transport Across the Blood-Brain Barrier
  • 2009
  • Doctoral thesis (other academic/artistic)abstract
    • The developmental aspect of drug transport across the blood-brain barrier (BBB) was investigated. Microdialysis was used to study unbound morphine BBB transport at different ages in sheep. An in vitro study was performed to find differentially expressed genes in brain capillary-rich fractions of the brain in rats of different ages. Microdialysis and brain-to-plasma ratios were used to study the contribution of breast cancer resistance protein (Bcrp) to the transport of nitrofurantoin (NTF) across the BBB of rats during development as well as in adult rats and mice. A method of analysing morphine and its metabolites in plasma and microdialysis samples was developed and validated. The in vivo recovery of deuterated morphine, used as a calibrator in microdialysis experiments, was not affected by the presence of morphine in the tissue. A net influx of morphine was observed in premature lambs and adult sheep, in contrast to the efflux seen in other species. This influx decreased with age, indicating that the morphine transport across the BBB changes with age. In contrast, the transport of the morphine metabolite morphine-3-glucuronide (M3G) did not change with age. Microarray data indicated that several active transporters are differentially expressed with age. Moreover, the mRNA expression levels of Abcg2 (Bcrp) and Slc22a8 (organic anion transporter 3) changed with age when quantified using real-time polymerase chain reaction. In contrast, the expression of Abcb1 (P-glycoprotein) and occludin (a tight junction protein) did not change with age. In rats, the brain distribution of NTF decreased with age due to increased protein binding in plasma. The concentration ratio of unbound NTF across the BBB was low in the adult rat, due to intra-brain metabolism and/or efflux by other transporters. Bcrp did not appear to have a significant contribution in the developing rat or in knock-out mice compared to wild-type controls with regard to NTF BBB transport. In conclusion, in vitro studies showed that the expression levels of some genes changed with age, presumably affecting subsequent drug distribution to the brain. Further, in vivo studies showed that distribution across the BBB changed with age for morphine but not for M3G or NTF.
  •  
4.
  • Chen, Xiaomei, et al. (author)
  • Revisiting atenolol as a low passive permeability marker
  • 2017
  • In: Fluids and Barriers of the CNS. - : Springer Science and Business Media LLC. - 2045-8118. ; 14
  • Journal article (peer-reviewed)abstract
    • Background: Atenolol, a hydrophilic beta blocker, has been used as a model drug for studying passive permeability of biological membranes such as the blood-brain barrier (BBB) and the intestinal epithelium. However, the extent of S-atenolol (the active enantiomer) distribution in brain has never been evaluated, at equilibrium, to confirm that no transporters are involved in its transport at the BBB.Methods: To assess whether S-atenolol, in fact, depicts the characteristics of a low passive permeable drug at the BBB, a microdialysis study was performed in rats to monitor the unbound concentrations of S-atenolol in brain extracellular fluid (ECF) and plasma during and after intravenous infusion. A pharmacokinetic model was developed, based on the microdialysis data, to estimate the permeability clearance of S-atenolol into and out of brain. In addition, the nonspecific binding of S-atenolol in brain homogenate was evaluated using equilibrium dialysis.Results: The steady-state ratio of unbound S-atenolol concentrations in brain ECF to that in plasma (i.e., -K-p,K-uu,K-brain) was 3.5% +/- 0.4%, a value much less than unity. The unbound volume of distribution in brain -(V-u,V- brain) of S-atenolol was also calculated as 0.69 +/- 0.10 mL/g brain, indicating that S-atenolol is evenly distributed within brain parenchyma. Lastly, equilibrium dialysis showed limited nonspecific binding of S-atenolol in brain homogenate with an unbound fraction -(f(u, brain)) of 0.88 +/- 0.07.Conclusions: It is concluded, based on -K-p,K-uu,K-brain being much smaller than unity, that S-atenolol is actively effluxed at the BBB, indicating the need to re-consider S-atenolol as a model drug for passive permeability studies of BBB transport or intestinal absorption.
  •  
5.
  • de Lange, Elizabeth C. M., et al. (author)
  • Understanding the Blood-Brain Barrier and Beyond : Challenges and Opportunities for Novel CNS Therapeutics
  • 2022
  • In: Clinical Pharmacology and Therapeutics. - : John Wiley & Sons. - 0009-9236 .- 1532-6535. ; 111:4, s. 758-773
  • Journal article (peer-reviewed)abstract
    • This review addresses questions on how to accomplish successful central nervous system (CNS) drug delivery (i.e., having the right concentration at the right CNS site, at the right time), by understanding the rate and extent of blood-brain barrier (BBB) transport and intra-CNS distribution in relation to CNS target site(s) exposure. To this end, we need to obtain and integrate quantitative and connected data on BBB using the Combinatory Mapping Approach that includes in vivo and ex vivo animal measurements, and the physiologically based comprehensive LEICNSPK3.0 mathematical model that can translate from animals to humans. For small molecules, slow diffusional BBB transport and active influx and efflux BBB transport determine the differences between plasma and CNS pharmacokinetics. Obviously, active efflux is important for limiting CNS drug delivery. Furthermore, liposomal formulations of small molecules may to a certain extent circumvent active influx and efflux at the BBB. Interestingly, for CNS pathologies, despite all reported disease associated BBB and CNS functional changes in animals and humans, integrative studies typically show a lack of changes on CNS drug delivery for the small molecules. In contrast, the understanding of the complex vesicle-based BBB transport modes that are important for CNS delivery of large molecules is in progress, and their BBB transport seems to be significantly affected by CNS diseases. In conclusion, today, CNS drug delivery of small drugs can be well assessed and understood by integrative approaches, although there is still quite a long way to go to understand CNS drug delivery of large molecules.
  •  
6.
  • Hu, Yang, 1989-, et al. (author)
  • In Vivo Quantitative Understanding of PEGylated Liposome’s Influence on Brain Delivery of Diphenhydramine
  • 2018
  • In: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 15:12, s. 5493-5500
  • Journal article (peer-reviewed)abstract
    • Despite the promising features of liposomes as brain drug delivery vehicles, it remains uncertain how they influence the brain uptake in vivo. In order to gain a better fundamental understanding of the interaction between liposomes and the blood–brain barrier (BBB), it is indispensable to test if liposomes affect drugs with different BBB transport properties (active influx or efflux) differently. The aim of this study was to quantitatively evaluate how PEGylated (PEG) liposomes influence brain delivery of diphenhydramine (DPH), a drug with active influx at the BBB, in rats. The brain uptake of DPH after 30 min intravenous infusion of free DPH, PEG liposomal DPH, or free DPH + empty PEG liposomes was compared by determining the unbound DPH concentrations in brain interstitial fluid and plasma with microdialysis. Regular blood samples were taken to measure total DPH concentrations in plasma. Free DPH was actively taken up into the brain time-dependently, with higher uptake at early time points followed by an unbound brain-to-plasma exposure ratio (Kp,uu) of 3.0. The encapsulation in PEG liposomes significantly decreased brain uptake of DPH, with a reduction of Kp,uu to 1.5 (p < 0.05). When empty PEG liposomes were coadministered with free drug, DPH brain uptake had a tendency to decrease (Kp,uu 2.3), and DPH was found to bind to the liposomes. This study showed that PEG liposomes decreased the brain delivery of DPH in a complex manner, contributing to the understanding of the intricate interactions between drug, liposomes, and the BBB.
  •  
7.
  • Hu, Yang, 1989-, et al. (author)
  • Targeted Brain Delivery of Methotrexate by Glutathione PEGylated Liposomes : How can the Formulation Make a Difference?
  • 2019
  • In: European journal of pharmaceutics and biopharmaceutics. - : Elsevier BV. - 0939-6411 .- 1873-3441. ; 139, s. 197-204
  • Journal article (peer-reviewed)abstract
    • The purpose of this study was to quantitatively investigate how conjugation of GSH to different liposomal formulations influence the brain delivery of methotrexate (MTX) in rats. GSH-PEG liposomal MTX based on hydrogenated soy phosphatidylcholine (HSPC) or egg yolk phosphatidylcholine (EYPC) and their corresponding PEG control liposomes were prepared. The brain delivery of MTX after intravenously administering free MTX, four liposomal formulations or free MTX + empty GSH-PEG-HSPC liposomes was evaluated by performing microdialysis in brain interstitial fluid and blood. Compared to free MTX with a steady-state unbound brain-toplasma concentration ratio (K-p,K-uu) of 0.10, PEG-HSPC liposomes did not affect the brain uptake of MTX, while PEG-EYPC liposomes improved the uptake (K-p,(uu) 1.5, p < 0.05). Compared to PEG control formulations, GSHPEG-HSPC liposomes increased brain delivery of MTX by 4-fold (K-p,(uu) 0.82, p < 0.05), while GSH-coating on PEG-EYPC liposomes did not result in a further enhancement in uptake. The co-administration of empty GSHPEG-HSPC liposomes with free MTX did not influence the uptake of MTX into the brain. This work showed that the brain-targeting effect of GSH-PEG liposomal MTX is highly dependent on the liposomal formulation that is combined with GSH, providing insights on formulation optimization of this promising brain delivery platform.
  •  
8.
  • Hu, Yang, et al. (author)
  • The Impact of Liposomal Formulations on the Release and Brain Delivery of Methotrexate : An In Vivo Microdialysis Study
  • 2017
  • In: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 106:9, s. 2606-2613
  • Journal article (peer-reviewed)abstract
    • The impact of liposomal formulations on the in vivo release and brain delivery of methotrexate (MTX) was quantitatively assessed in rats. Two PEGylated liposomal MTX formulations based on hydrogenated soy phosphatidylcholine (HSPC) or egg-yolk phosphatidylcholine (EYPC) were prepared. The drug release and uptake into the brain after intravenous administration of both formulations were compared with unformulated MTX by determining the released, unbound MTX in brain and plasma using microdialysis. Total MTX concentrations in plasma were determined using regular blood sampling. The administration of both high-and low-dose EYPC liposomes resulted in 10 times higher extent of MTX release in plasma compared to that obtained from HSPC liposomes (p < 0.05). MTX itself possessed limited brain uptake with steady-state unbound brain-to-plasma concentration ratio (K-p,K-uu) of 0.10 +/- 0.06. Encapsulation in HSPC liposomes did not affect MTX brain uptake (K-p,K-uu 0.11 +/- 0.05). In contrast, EYPC liposomes significantly improved MTX brain delivery with a 3-fold increase of Kp, uu (0.28 +/- 0.14 and 0.32 +/- 0.13 for high-and low-dose EYPC liposomal MTX, respectively, p < 0.05). These results provide unique quantitative evidence that liposomal formulations based on different phospholipids can result in very different brain delivery of MTX.
  •  
9.
  • Lebedev, Alexander V., et al. (author)
  • Effects of daily L-dopa administration on learning and brain structure in older adults undergoing cognitive training : a randomised clinical trial
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10
  • Journal article (peer-reviewed)abstract
    • Cognitive aging creates major individual and societal burden, motivating search for treatment and preventive care strategies. Behavioural interventions can improve cognitive performance in older age, but effects are small. Basic research has implicated dopaminergic signalling in plasticity. We investigated whether supplementation with the dopamine-precursor L-dopa improves effects of cognitive training on performance. Sixty-three participants for this randomised, parallel-group, double-blind, placebo-controlled trial were recruited via newspaper advertisements. Inclusion criteria were: age of 65–75 years, Mini-Mental State Examination score >25, absence of serious medical conditions. Eligible subjects were randomly allocated to either receive 100/25 mg L-dopa/benserazide (n = 32) or placebo (n = 31) prior to each of twenty cognitive training sessions administered during a four-week period. Participants and staff were blinded to group assignment. Primary outcomes were latent variables of spatial and verbal fluid intelligence. Compared to the placebo group, subjects receiving L-dopa improved less in spatial intelligence (−0.267 SDs; 95%CI [−0.498, −0.036]; p = 0.024). Change in verbal intelligence did not significantly differ between the groups (−0.081 SDs, 95%CI [−0.242, 0.080]; p = 0.323). Subjects receiving L-dopa also progressed slower through the training and the groups displayed differential volumetric changes in the midbrain. No statistically significant differences were found for the secondary cognitive outcomes. Adverse events occurred for 10 (31%) and 7 (23%) participants in the active and control groups, correspondingly. The results speak against early pharmacological interventions in older healthy adults to improve broader cognitive functions by targeting the dopaminergic system and provide no support for learning-enhancing properties of L-dopa supplements in the healthy elderly. The findings warrant closer investigation about the cognitive effects of early dopamine-replacement therapy in neurological disorders. This trial was preregistered at the European Clinical Trial Registry, EudraCT#2016-000891-54 (2016-10-05).
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13
Type of publication
journal article (12)
doctoral thesis (1)
Type of content
peer-reviewed (11)
other academic/artistic (2)
Author/Editor
Hammarlund-Udenaes, ... (7)
Børresen-Dale, Anne- ... (1)
Nevanlinna, Heli (1)
Blomqvist, Carl (1)
Aittomäki, Kristiina (1)
Kelly, Daniel (1)
show more...
Yoon, Sook-Yee (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Chang-Claude, Jenny (1)
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Lebedev, Alexander V (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Wang, Qin (1)
Sörelius, Karl, 1981 ... (1)
Haiman, Christopher ... (1)
Muir, Kenneth (1)
Batra, Jyotsna (1)
Giles, Graham G (1)
Cybulski, Cezary (1)
Brenner, Hermann (1)
John, Esther M (1)
Teixeira, Manuel R (1)
Neuhausen, Susan L (1)
Roobol, Monique J (1)
Backman, Lars (1)
Kivipelto, Miia (1)
Darabi, Hatef (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Seynaeve, C (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Arndt, Volker (1)
Rennert, Gad (1)
Wang, Jun (1)
Wu, Anna H. (1)
Pollesello, Piero (1)
show less...
University
Uppsala University (12)
Karolinska Institutet (3)
Stockholm University (2)
Lund University (2)
University of Gothenburg (1)
Halmstad University (1)
show more...
Linköping University (1)
Chalmers University of Technology (1)
The Swedish School of Sport and Health Sciences (1)
show less...
Language
English (13)
Research subject (UKÄ/SCB)
Medical and Health Sciences (12)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view