SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(DePonte D. P.) "

Search: WFRF:(DePonte D. P.)

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Boutet, S., et al. (author)
  • High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography
  • 2012
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 337:6092, s. 362-364
  • Journal article (peer-reviewed)abstract
    • Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.
  •  
2.
  • Arnlund, David, et al. (author)
  • Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser
  • 2014
  • In: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 11:9, s. 923-926
  • Journal article (peer-reviewed)abstract
    • We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions.
  •  
3.
  • Barty, A., et al. (author)
  • Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements
  • 2012
  • In: Nature Photonics. - 1749-4885 .- 1749-4893. ; 6:1, s. 35-40
  • Journal article (peer-reviewed)abstract
    • X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1, 2, 3, 4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.
  •  
4.
  • Nogly, P., et al. (author)
  • Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 angstrom resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.
  •  
5.
  • Sellberg, Jonas A., et al. (author)
  • Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 510:7505, s. 381-
  • Journal article (peer-reviewed)abstract
    • Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1-3). This has prompted debate about conflicting theories(4-12) that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the 'no man's land' that lies below the homogeneous ice nucleation temperature (T-H) at approximately 232 kelvin(13) and above about 160 kelvin(14), and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin(2,15). Water crystallization has been inhibited by using nanoconfinement(16), nanodroplets(17) and association with biomolecules(16) to give liquid samples at temperatures below T-H, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear(18). Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled(19-21) below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 227(-1)(+2) kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best describe and explain the behaviour of water.
  •  
6.
  • Aquila, A., et al. (author)
  • The linac coherent light source single particle imaging road map
  • 2015
  • In: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 2:4
  • Journal article (peer-reviewed)abstract
    • Intense femtosecond x-ray pulses from free-electron laser sources allow the imag-ing of individual particles in a single shot. Early experiments at the Linac CoherentLight Source (LCLS) have led to rapid progress in the field and, so far, coherentdiffractive images have been recorded from biological specimens, aerosols, andquantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLSheld a workshop to discuss the scientific and technical challenges for reaching theultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap towardreaching atomic resolution, 3D imaging at free-electron laser sources.
  •  
7.
  • Chapman, Henry N, et al. (author)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Journal article (peer-reviewed)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
8.
  • Hantke, Max F., et al. (author)
  • A data set from flash X-ray imaging of carboxysomes
  • 2016
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Journal article (peer-reviewed)abstract
    • Ultra-intense femtosecond X-ray pulses from X-ray lasers permit structural studies on single particles and biomolecules without crystals. We present a large data set on inherently heterogeneous, polyhedral carboxysome particles. Carboxysomes are cell organelles that vary in size and facilitate up to 40% of Earth’s carbon fixation by cyanobacteria and certain proteobacteria. Variation in size hinders crystallization. Carboxysomes appear icosahedral in the electron microscope. A protein shell encapsulates a large number of Rubisco molecules in paracrystalline arrays inside the organelle. We used carboxysomes with a mean diameter of 115±26 nm from Halothiobacillus neapolitanus. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min. Every diffraction pattern is a unique structure measurement and high-throughput imaging allows sampling the space of structural variability. The different structures can be separated and phased directly from the diffraction data and open a way for accurate, high-throughput studies on structures and structural heterogeneity in biology and elsewhere.
  •  
9.
  • Hantke, Max F., et al. (author)
  • High-throughput imaging of heterogeneous cell organelles with an X-ray laser
  • 2014
  • In: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 8:12, s. 943-949
  • Journal article (peer-reviewed)abstract
    • We overcome two of the most daunting challenges in single-particle diffractive imaging: collecting many high-quality diffraction patterns on a small amount of sample and separating components from mixed samples. We demonstrate this on carboxysomes, which are polyhedral cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12 min with the Linac Coherent Light Source running at 120 Hz. We separate different structures directly from the diffraction data and show that the size distribution is preserved during sample delivery. We automate phase retrieval and avoid reconstruction artefacts caused by missing modes. We attain the highest-resolution reconstructions on the smallest single biological objects imaged with an X-ray laser to date. These advances lay the foundations for accurate, high-throughput structure determination by flash-diffractive imaging and offer a means to study structure and structural heterogeneity in biology and elsewhere.
  •  
10.
  • Seibert, M. Marvin, et al. (author)
  • Single mimivirus particles intercepted and imaged with an X-ray laser
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 470:7332, s. 78-81
  • Journal article (peer-reviewed)abstract
    • X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions(1-4). Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma(1). The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval(2). Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a noncrystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source(5). Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20
Type of publication
journal article (20)
Type of content
peer-reviewed (20)
Author/Editor
Seibert, M Marvin (16)
Hajdu, Janos (13)
Rudenko, Artem (13)
Rolles, Daniel (13)
Hartmann, Robert (13)
Barty, Anton (13)
show more...
Maia, Filipe R. N. C ... (13)
Bostedt, Christoph (13)
Bozek, John D. (13)
DePonte, Daniel P. (13)
Kimmel, Nils (13)
Andreasson, Jakob (12)
Martin, Andrew V. (12)
Liang, Mengning (12)
Timneanu, Nicusor (11)
Ekeberg, Tomas (11)
Foucar, Lutz (11)
Chapman, Henry N. (11)
Epp, Sascha W. (11)
Aquila, Andrew (10)
Rudek, Benedikt (10)
Holl, Peter (10)
Erk, Benjamin (9)
Svenda, Martin (9)
Schulz, Joachim (9)
Stellato, Francesco (9)
Graafsma, Heinz (8)
Hirsemann, Helmut (8)
Bogan, Michael J. (8)
Andersson, Inger (8)
Shoeman, Robert L (8)
Kirian, Richard A. (8)
Bajt, Saša (8)
Barthelmess, Miriam (8)
Coppola, Nicola (8)
Gumprecht, Lars (8)
Hampton, Christina Y ... (8)
Lomb, Lukas (8)
Reich, Christian (8)
Schlichting, Ilme (8)
Soltau, Heike (8)
Ullrich, Joachim (8)
Weidenspointner, Geo ... (8)
Caleman, Carl (7)
Doak, R Bruce (7)
White, Thomas A. (7)
Stern, Stephan (7)
Weierstall, Uwe (7)
Spence, John C. H. (7)
Schorb, Sebastian (7)
show less...
University
Uppsala University (18)
University of Gothenburg (8)
Chalmers University of Technology (2)
Swedish University of Agricultural Sciences (2)
Stockholm University (1)
Language
English (19)
Undefined language (1)
Research subject (UKÄ/SCB)
Natural sciences (20)
Medical and Health Sciences (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view