SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Del Moral A) "

Search: WFRF:(Del Moral A)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Pellissier, V., et al. (author)
  • Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data
  • 2020
  • In: Conservation Biology. - : Wiley. - 0888-8892 .- 1523-1739. ; 34:3, s. 666-676
  • Journal article (peer-reviewed)abstract
    • The European Union's Natura 2000 (N2000) is among the largest international networks of protected areas. One of its aims is to secure the status of a predetermined set of (targeted) bird and butterfly species. However, nontarget species may also benefit from N2000. We evaluated how the terrestrial component of this network affects the abundance of nontargeted, more common bird and butterfly species based on data from long-term volunteer-based monitoring programs in 9602 sites for birds and 2001 sites for butterflies. In almost half of the 155 bird species assessed, and particularly among woodland specialists, abundance increased (slope estimates ranged from 0.101 [SD 0.042] to 3.51 [SD 1.30]) as the proportion of landscape covered by N2000 sites increased. This positive relationship existed for 27 of the 104 butterfly species (estimates ranged from 0.382 [SD 0.163] to 4.28 [SD 0.768]), although most butterflies were generalists. For most species, when land-cover covariates were accounted for these positive relationships were not evident, meaning land cover may be a determinant of positive effects of the N2000 network. The increase in abundance as N2000 coverage increased correlated with the specialization index for birds, but not for butterflies. Although the N2000 network supports high abundance of a large spectrum of species, the low number of specialist butterflies with a positive association with the N2000 network shows the need to improve the habitat quality of N2000 sites that could harbor open-land butterfly specialists. For a better understanding of the processes involved, we advocate for standardized collection of data at N2000 sites.
  •  
4.
  • Zarzoura, Mohamed, et al. (author)
  • Investigation into reducing anthropomorphic hand degrees of freedom while maintaining human hand grasping functions
  • 2019
  • In: Proceedings of the Institution of mechanical engineers. Part H, journal of engineering in medicine. - London, UK : Sage Publications. - 0954-4119 .- 2041-3033. ; 233:2, s. 279-292
  • Journal article (peer-reviewed)abstract
    • Underactuation is widely used when designing anthropomorphic hand, which involves fewer degrees of actuation than degrees of freedom. However, the similarities between coordinated joint movements and movement variances across different grasp tasks have not been suitably examined. This work suggests a systematic approach to identify the actuation strategy with the minimum number for degrees of actuation for anthropomorphic hands. This work evaluates the correlations of coordinated movements in human hands during 23 grasp tasks to suggest actuation strategies for anthropomorphic hands. Our approach proceeds as follows: first, we find the best description for each coordinated joint movement in each grasp task by using multiple linear regression; then, based on the similarities between joint movements, we classify hand joints into groups by using hierarchical cluster analysis; finally, we reduce the dimensionality of each group of joints by employing principal components analysis. The metacarpophalangeal joints and proximal interphalangeal joints have the best and most consistent description of their coordinated movements across all grasp tasks. The thumb metacarpophalangeal and abduction/adduction between the ring and little fingers exhibit relatively high independence of movement. The distal interphalangeal joints show a high degree of independent movement but not for all grasp tasks. Analysis of the results indicates that for the distal interphalangeal joints, their coordinated movements are better explained when all fingers wrap around the object. Our approach fails to provide more information for the other joints. We conclude that 19 degrees of freedom for an anthropomorphic hand can be reduced to 13 degrees of actuation distributed between six groups of joints. The number of degrees of actuation can be further reduced to six by relaxing the dimensionality reduction criteria. Other resolutions are as follows: (a) the joint coupling scheme should be joint-based rather than finger-based and (b) hand designs may need to include finger abduction/adduction movements.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view