SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Desler Claus) "

Search: WFRF:(Desler Claus)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fernandez Navarro, Jose, et al. (author)
  • Spatial Transcriptomics Reveals Genes Associated with Dysregulated Mitochondrial Functions and Stress Signaling in Alzheimer Disease
  • 2020
  • In: iScience. - : Elsevier Inc.. - 2589-0042. ; 23:10
  • Journal article (peer-reviewed)abstract
    • Cellular Neuroscience; Omics; Transcriptomics Alzheimer disease (AD) is a devastating neurological disease associated with progressive loss of mental skills and cognitive and physical functions whose etiology is not completely understood. Here, our goal was to simultaneously uncover novel and known molecular targets in the structured layers of the hippocampus and olfactory bulbs that may contribute to early hippocampal synaptic deficits and olfactory dysfunction in AD mice. Spatially resolved transcriptomics was used to identify high-confidence genes that were differentially regulated in AD mice relative to controls. A diverse set of genes that modulate stress responses and transcription were predominant in both hippocampi and olfactory bulbs. Notably, we identify Bok, implicated in mitochondrial physiology and cell death, as a spatially downregulated gene in the hippocampus of mouse and human AD brains. In summary, we provide a rich resource of spatially differentially expressed genes, which may contribute to understanding AD pathology.
  •  
2.
  • Lopez-Contreras, Andres J., et al. (author)
  • Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice
  • 2015
  • In: Genes & Development. - : Cold Spring Harbor Laboratory Press. - 0890-9369 .- 1549-5477. ; 29:7, s. 690-695
  • Journal article (peer-reviewed)abstract
    • In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the RNR regulatory subunit RRM2 (Rrm2(TG)) present supraphysiological RNR activity and reduced chromosomal breakage at fragile sites. Moreover, increased Rrm2 gene dosage significantly extends the life span of ATR mutant mice. Our study reveals the first genetic condition in mammals that reduces fragile site expression and alleviates the severity of a progeroid disease by increasing RNR activity. Supplemental material is available for this article.
  •  
3.
  • Strickertsson, Jesper A. B., et al. (author)
  • Enterococcus faecalis Infection Causes Inflammation, Intracellular Oxphos-Independent ROS Production, and DNA Damage in Human Gastric Cancer Cells
  • 2013
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:4
  • Journal article (peer-reviewed)abstract
    • Background: Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. Methods: To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. Results: Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Conclusions: Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-kappa B inflammatory response as well as impaired DNA damage response and cell cycle control gene expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view