SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dessen Philippe) "

Search: WFRF:(Dessen Philippe)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bertolotto, Corine, et al. (author)
  • A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 480:7375, s. 94-98
  • Journal article (peer-reviewed)abstract
    • So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes(1); risk factors associated with RCC include smoking, obesity and hypertension(2). A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers(3). The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene(4); it also stimulates the transcription of hypoxia inducible factor(5) (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes(6). We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (Psi KXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer.
  •  
2.
  • Galluzzi, Lorenzo, et al. (author)
  • Prognostic Impact of Vitamin B6 Metabolism in Lung Cancer
  • 2012
  • In: Cell Reports. - Cambridge : Cell press. - 2211-1247. ; 2:2, s. 257-269
  • Journal article (peer-reviewed)abstract
    • Patients with non-small cell lung cancer (NSCLC) are routinely treated with cytotoxic agents such as cisplatin. Through a genome-wide siRNA-based screen, we identified vitamin B6 metabolism as a central regulator of cisplatin responses in vitro and in vivo. By aggravating a bioenergetic catastrophe that involves the depletion of intracellular glutathione, vitamin B6 exacerbates cisplatin-mediated DNA damage, thus sensitizing a large panel of cancer cell lines to apoptosis. Moreover, vitamin B6 sensitizes cancer cells to apoptosis induction by distinct types of physical and chemical stress, including multiple chemotherapeutics. This effect requires pyridoxal kinase (PDXK), the enzyme that generates the bioactive form of vitamin B6. In line with a general role of vitamin B6 in stress responses, low PDXK expression levels were found to be associated with poor disease outcome in two independent cohorts of patients with NSCLC. These results indicate that PDXK expression levels constitute a biomarker for risk stratification among patients with NSCLC.
  •  
3.
  • Lazar, Vladimir, et al. (author)
  • Integrated molecular portrait of non-small cell lung cancers
  • 2013
  • In: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 6:1, s. 53-
  • Journal article (peer-reviewed)abstract
    • Background: Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths, represents a heterogeneous group of neoplasms, mostly comprising squamous cell carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma (LCC). The objectives of this study were to utilize integrated genomic data including copy-number alteration, mRNA, microRNA expression and candidate-gene full sequencing data to characterize the molecular distinctions between AC and SCC. Methods: Comparative genomic hybridization followed by mutational analysis, gene expression and miRNA microarray profiling were performed on 123 paired tumor and non-tumor tissue samples from patients with NSCLC. Results: At DNA, mRNA and miRNA levels we could identify molecular markers that discriminated significantly between the various histopathological entities of NSCLC. We identified 34 genomic clusters using aCGH data; several genes exhibited a different profile of aberrations between AC and SCC, including PIK3CA, SOX2, THPO, TP63, PDGFB genes. Gene expression profiling analysis identified SPP1, CTHRC1and GREM1 as potential biomarkers for early diagnosis of the cancer, and SPINK1 and BMP7 to distinguish between AC and SCC in small biopsies or in blood samples. Using integrated genomics approach we found in recurrently altered regions a list of three potential driver genes, MRPS22, NDRG1 and RNF7, which were consistently over-expressed in amplified regions, had wide-spread correlation with an average of similar to 800 genes throughout the genome and highly associated with histological types. Using a network enrichment analysis, the targets of these potential drivers were seen to be involved in DNA replication, cell cycle, mismatch repair, p53 signalling pathway and other lung cancer related signalling pathways, and many immunological pathways. Furthermore, we also identified one potential driver miRNA hsa-miR-944. Conclusions: Integrated molecular characterization of AC and SCC helped identify clinically relevant markers and potential drivers, which are recurrent and stable changes at DNA level that have functional implications at RNA level and have strong association with histological subtypes.
  •  
4.
  • Michels, Judith, et al. (author)
  • Cisplatin Resistance Associated with PARP Hyperactivation
  • 2013
  • In: Cancer Research. - Philadelphia : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 73:7, s. 2271-2280
  • Journal article (peer-reviewed)abstract
    • Non-small cell lung carcinoma patients are frequently treated with cisplatin (CDDP), most often yielding temporary clinical responses. Here, we show that PARP1 is highly expressed and constitutively hyperactivated in a majority of human CDDP-resistant cancer cells of distinct histologic origin. Cells manifesting elevated intracellular levels of poly(ADP-ribosyl)ated proteins (PAR(high)) responded to pharmacologic PARP inhibitors as well as to PARP1-targeting siRNAs by initiating a DNA damage response that translated into cell death following the activation of the intrinsic pathway of apoptosis. Moreover, PARP1-overexpressing tumor cells and xenografts displayed elevated levels of PAR, which predicted the response to PARP inhibitors in vitro and in vivo more accurately than PARP1 expression itself. Thus, a majority of CDDP-resistant cancer cells appear to develop a dependency to PARP1, becoming susceptible to PARP inhibitor-induced apoptosis. Cancer Res; 73(7); 2271-80.
  •  
5.
  • Alexeyenko, Andrey, et al. (author)
  • Network enrichment analysis : extension of gene-set enrichment analysis to gene networks
  • 2012
  • In: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 13, s. 226-
  • Journal article (peer-reviewed)abstract
    • Background: Gene-set enrichment analyses (GEA or GSEA) are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis. Results: We developed a method of network enrichment analysis (NEA) that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study. Conclusions: The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.
  •  
6.
  • Berois, Nora, et al. (author)
  • ppGalNAc-TI3 : A new molecular marker of bone marrow involvement in neuroblastoma
  • 2006
  • In: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 52:9, s. 1701-1712
  • Journal article (peer-reviewed)abstract
    • Background: To identify new molecular markers of bone marrow dissemination in human neuroblastoma (NB), we studied the transcriptome profiles of malignant neuroblasts established from the human MYCN-amplified IGR-N-91 model. Methods: This experimental model includes human neuroblastoma cells derived from & subcutaneous stage 4 disease, myocardium (Myoc) and bone marrow (BM) metastatic cells. Results: Gene expression profiles obtained with Agilent oligo microarrays revealed a set of 107 differentially expressed genes in the metastatic neuroblasts. This set included up-regulated genes involved in chemoresistance, cell motility, neuronal structure/signaling, and the recently characterized GALNT13 gene encoding a glycosyltransferase that initiates mucin-type O-glycosylation. Because the glycosylation process is involved in the progression of primary tumor to metastatic disease, we investigated whether the most strongly upregulated gene, GALNT13, might be a marker of bone marrow involvement in stage 4 NB patients. Importantly, in the BM of healthy adults no GALNT13 transcript was detected with analysis by quantitative (n = 3) and nested reverse transcription-PCR (n = 4) assays. In contrast, GALNT13 transcripts were detected in 23/23 cytologically involved BM samples obtained at diagnosis of stage 4 NB patients and in 5/27 cytologically noninvolved BM samples obtained from patients with stage 1-4 and 4S and treated stage 4 NB. The quantitative measurements of tyrosine hydroxylase (TH), ganglioside D2 synthase, dopa decarboxylase, and GALNT13 transcript values were compared in the same NB patients, and the results showed that GALNT13 expression was most highly correlated to poor clinical outcome at diagnosis. Conclusion: We propose ppGalNAc-T13 as a new informative marker for the molecular diagnosis of BM involvement and the follow-up of minimal residual disease in NB patients. © 2006 American Association for Clinical Chemistry.
  •  
7.
  • van Kempen, Leon C. L., et al. (author)
  • The protein phosphatase 2A regulatory subunit PR70 is a gonosomal melanoma tumor suppressor gene
  • 2016
  • In: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 8:369
  • Journal article (peer-reviewed)abstract
    • Male gender is independently and significantly associated with poor prognosis in melanoma of all clinical stages. The biological underpinnings of this sex difference remain largely unknown, but we hypothesized that gene expression from gonosomes (sex chromosomes) might play an important role. We demonstrate that loss of the inactivated X chromosome in melanomas arising in females is strongly associated with poor distant metastasis-free survival, suggesting a dosage benefit from two X chromosomes. The gonosomal protein phosphatase 2 regulatory subunit B, beta (PPP2R3B) gene is located on the pseudoautosomal region (PAR) of the X chromosome in females and the Y chromosome in males. We observed that, despite its location on the PAR that predicts equal dosage across genders, PPP2R3B expression was lower in males than in females and was independently correlated with poor clinical outcome. PPP2R3B codes for the PR70 protein, a regulatory substrate-recognizing subunit of protein phosphatase 2A. PR70 decreased melanoma growth by negatively interfering with DNA replication and cell cycle progression through its role in stabilizing the cell division cycle 6 (CDC6)-chromatin licensing and DNA replication factor 1 (CDT1) interaction, which delays the firing of origins of DNA replication. Hence, PR70 functionally behaves as an X-linked tumor suppressor gene.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view