SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dey Abhishek) "

Search: WFRF:(Dey Abhishek)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahmed, Md Estak, et al. (author)
  • A Bidirectional Bioinspired [FeFe]-Hydrogenase Model
  • 2022
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:8, s. 3614-3625
  • Journal article (peer-reviewed)abstract
    • With the price-competitiveness of solar and wind power, hydrogen technologies may be game changers for a cleaner, defossilized, and sustainable energy future. H-2 can indeed be produced in electrolyzers from water, stored for long periods, and converted back into power, on demand, in fuel cells. The feasibility of the latter process critically depends on the discovery of cheap and efficient catalysts able to replace platinum group metals at the anode and cathode of fuel cells. Bioinspiration can be key for designing such alternative catalysts. Here we show that a novel class of iron-based catalysts inspired from the active site of [FeFe]-hydrogenase behave as unprecedented bidirectional electrocatalysts for interconverting H-2 and protons efficiently under near-neutral aqueous conditions. Such bioinspired catalysts have been implemented at the anode of a functional membrane-less H-2/O-2 fuel cell device.
  •  
2.
  • Bernardin, Evans, et al. (author)
  • Development of an all-SiC neuronal interface device
  • 2016
  • In: MRS Advances. - : Cambridge University Press. - 2059-8521. ; 1:55, s. 3679-3684
  • Journal article (peer-reviewed)abstract
    • The intracortical neural interface (INI) is a key component of brain machine interfaces (BMI) which offer the possibility to restore functions lost by patients due to severe trauma to the central or peripheral nervous system. Unfortunately today’s neural electrodes suffer from a variety of design flaws, mainly the use of non-biocompatible materials based on Si or W with polymer coatings to mask the underlying material. Silicon carbide (SiC) is a semiconductor that has been proven to be highly biocompatible, and this chemically inert, physically robust material system may provide the longevity and reliability needed for the INI community. The design, fabrication, and preliminary testing of a prototype all-SiC planar microelectrode array based on 4H-SiC with an amorphous silicon carbide (a-SiC) insulator is described. The fabrication of the planar microelectrode was performed utilizing a series of conventional micromachining steps. Preliminary data is presented which shows a proof of concept for an all-SiC microelectrode device.
  •  
3.
  • Chattopadhyay, Samir, et al. (author)
  • Silver nanostructure-modified graphite electrode for in-operando SERRS investigation of iron porphyrins during high-potential electrocatalysis
  • 2023
  • In: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 158:4
  • Journal article (peer-reviewed)abstract
    • In-operando spectroscopic observation of the intermediates formed during various electrocatalytic oxidation and reduction reactions is crucial to propose the mechanism of the corresponding reaction. Surface-enhanced resonance Raman spectroscopy coupled to rotating disk electrochemistry (SERRS-RDE), developed about a decade ago, proved to be an excellent spectroscopic tool to investigate the mechanism of heterogeneous oxygen reduction reaction (ORR) catalyzed by synthetic iron porphyrin complexes under steady-state conditions in water. The information about the formation of the intermediates accumulated during the course of the reaction at the electrode interface helped to develop better ORR catalysts with second sphere residues in the porphyrin rings. To date, the application of this SERRS-RDE setup is limited to ORR only because the thiol self-assembled monolayer (SAM)-modified Ag electrode, used as the working electrode in these experiments, suffers from stability issues at more cathodic and anodic potential, where H2O oxidation, CO2 reduction, and H+ reduction reactions occur. The current investigation shows the development of a second-generation SERRS-RDE setup consisting of an Ag nanostructure (AgNS)-modified graphite electrode as the working electrode. These electrodes show higher stability (compared to the conventional thiol SAM-modified Ag electrode) upon exposure to very high cathodic and anodic potential with a good signal-to-noise ratio in the Raman spectra. The behavior of this modified electrode toward ORR is found to be the same as the SAM-modified Ag electrode, and the same ORR intermediates are observed during electrochemical ORR. At higher cathodic potential, the signatures of Fe(0) porphyrin, an important intermediate in H+ and CO2 reduction reactions, was observed at the electrode-water interface.
  •  
4.
  • Dey, Anchita, et al. (author)
  • Adaptive Output Feedback Model Predictive Control
  • 2023
  • In: IEEE Control Systems Letters. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2475-1456. ; 7, s. 1129-1134
  • Journal article (peer-reviewed)abstract
    • Model predictive control (MPC) for uncertain systems in the presence of hard constraints on state and input is a non-trivial problem, and the challenge is increased manyfold in the absence of state measurements. In this letter, we propose an adaptive output feedback MPC technique, based on a novel combination of an adaptive observer and robust MPC, for single-input single-output discrete-time linear time-invariant systems. At each time instant, the adaptive observer provides estimates of the states and the system parameters that are then leveraged in the MPC optimization routine while robustly accounting for the estimation errors. The solution to the optimization problem results in a homothetic tube where the state estimate trajectory lies. The true state evolves inside a larger outer tube obtained by augmenting a set, invariant to the state estimation error, around the homothetic tube sections. The proof for recursive feasibility for the proposed "homothetic and invariant two-tube approach is provided, along with simulation results on an academic system.
  •  
5.
  • Puthenveetil, Robbins, et al. (author)
  • The major outer sheath protein forms distinct conformers and multimeric complexes in the outer membrane and periplasm of Treponema denticola.
  • 2017
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The major outer sheath protein (MOSP) is a prominent constituent of the cell envelope of Treponema denticola (TDE) and one of its principal virulence determinants. Bioinformatics predicts that MOSP consists of N-and C-terminal domains, MOSPN and MOSPC. Biophysical analysis of constructs refolded in vitro demonstrated that MOSPC, previously shown to possess porin activity, forms amphiphilic trimers, while MOSPN forms an extended hydrophilic monomer. In TDE and E. coli expressing MOSP with a PelB signal sequence (PelB-MOSP), MOSPC is OM-embedded and surface-exposed, while MOSPN resides in the periplasm. Immunofluorescence assay, surface proteolysis, and novel cell fractionation schemes revealed that MOSP in TDE exists as outer membrane (OM) and periplasmic trimeric conformers; PelB-MOSP, in contrast, formed only OM-MOSP trimers. Although both conformers form hetero-oligomeric complexes in TDE, only OM-MOSP associates with dentilisin. Mass spectrometry (MS) indicated that OM-MOSP interacts with proteins in addition to dentilisin, most notably, oligopeptide-binding proteins (OBPs) and the beta-barrel of BamA. MS also identified candidate partners for periplasmic MOSP, including TDE1658, a spirochete-specific SurA/PrsA ortholog. Collectively, our data suggest that MOSP destined for the TDE OM follows the canonical BAM pathway, while formation of a stable periplasmic conformer involves an export-related, folding pathway not present in E. coli.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view