SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dimmock Andrew P.) "

Search: WFRF:(Dimmock Andrew P.)

  • Result 1-10 of 51
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Allen, R. C., et al. (author)
  • Energetic ions in the Venusian system : Insights from the first Solar Orbiter flyby
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • The Solar Orbiter flyby of Venus on 27 December 2020 allowed for an opportunity to measure the suprathermal to energetic ions in the Venusian system over a large range of radial distances to better understand the acceleration processes within the system and provide a characterization of galactic cosmic rays near the planet. Bursty suprathermal ion enhancements (up to similar to 10 keV) were observed as far as similar to 50R(V) downtail. These enhancements are likely related to a combination of acceleration mechanisms in regions of strong turbulence, current sheet crossings, and boundary layer crossings, with a possible instance of ion heating due to ion cyclotron waves within the Venusian tail. Upstream of the planet, suprathermal ions are observed that might be related to pick-up acceleration of photoionized exospheric populations as far as 5R(V) upstream in the solar wind as has been observed before by missions such as Pioneer Venus Orbiter and Venus Express. Near the closest approach of Solar Orbiter, the Galactic cosmic ray (GCR) count rate was observed to decrease by approximately 5 percent, which is consistent with the amount of sky obscured by the planet, suggesting a negligible abundance of GCR albedo particles at over 2 R-V. Along with modulation of the GCR population very close to Venus, the Solar Orbiter observations show that the Venusian system, even far from the planet, can be an effective accelerator of ions up to similar to 30 keV. This paper is part of a series of the first papers from the Solar Orbiter Venus flyby.
  •  
2.
  • Hadid, L. Z., et al. (author)
  • BepiColombo's Cruise Phase : Unique Opportunity for Synergistic Observations
  • 2021
  • In: Frontiers in Astronomy and Space Sciences. - : Frontiers Media S.A.. - 2296-987X. ; 8
  • Journal article (peer-reviewed)abstract
    • The investigation of multi-spacecraft coordinated observations during the cruise phase of BepiColombo (ESA/JAXA) are reported, with a particular emphasis on the recently launched missions, Solar Orbiter (ESA/NASA) and Parker Solar Probe (NASA). Despite some payload constraints, many instruments onboard BepiColombo are operating during its cruise phase simultaneously covering a wide range of heliocentric distances (0.28 AU-0.5 AU). Hence, the various spacecraft configurations and the combined in-situ and remote sensing measurements from the different spacecraft, offer unique opportunities for BepiColombo to be part of these unprecedented multipoint synergistic observations and for potential scientific studies in the inner heliosphere, even before its orbit insertion around Mercury in December 2025. The main goal of this report is to present the coordinated observation opportunities during the cruise phase of BepiColombo (excluding the planetary flybys). We summarize the identified science topics, the operational instruments, the method we have used to identify the windows of opportunity and discuss the planning of joint observations in the future.
  •  
3.
  • Hadid, L. Z., et al. (author)
  • Solar Orbiter's first Venus flyby : Observations from the Radio and Plasma Wave instrument
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • Context. On December 27, 2020, Solar Orbiter completed its first gravity assist manoeuvre of Venus (VGAM1). While this flyby was performed to provide the spacecraft with sufficient velocity to get closer to the Sun and observe its poles from progressively higher inclinations, the Radio and Plasma Wave (RPW) consortium, along with other operational in situ instruments, had the opportunity to perform high cadence measurements and study the plasma properties in the induced magnetosphere of Venus.Aims. In this paper, we review the main observations of the RPW instrument during VGAM1. They include the identification of a number of magnetospheric plasma wave modes, measurements of the electron number densities computed using the quasi-thermal noise spectroscopy technique and inferred from the probe-to-spacecraft potential, the observation of dust impact signatures, kinetic solitary structures, and localized structures at the bow shock, in addition to the validation of the wave normal analysis on-board from the Low Frequency Receiver.Methods. We used the data products provided by the different subsystems of RPW to study Venus' induced magnetosphere.Results. The results include the observations of various electromagnetic and electrostatic wave modes in the induced magnetosphere of Venus: strong emissions of similar to 100 Hz whistler waves are observed in addition to electrostatic ion acoustic waves, solitary structures and Langmuir waves in the magnetosheath of Venus. Moreover, based on the different levels of the wave amplitudes and the large-scale variations of the electron number densities, we could identify different regions and boundary layers at Venus.Conclusions. The RPW instrument provided unprecedented AC magnetic and electric field measurements in Venus' induced magnetosphere for continuous frequency ranges and with high time resolution. These data allow for the conclusive identification of various plasma waves at higher frequencies than previously observed and a detailed investigation regarding the structure of the induced magnetosphere of Venus. Furthermore, noting that prior studies were mainly focused on the magnetosheath region and could only reach 10-12 Venus radii (R-V) down the tail, the particular orbit geometry of Solar Orbiter's VGAM1, allowed the first investigation of the nature of the plasma waves continuously from the bow shock to the magnetosheath, extending to similar to 70R(V) in the far distant tail region.
  •  
4.
  • Rosenqvist, L., et al. (author)
  • 3D Modeling of Geomagnetically Induced Currents in Sweden-Validation and Extreme Event Analysis
  • 2022
  • In: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 20:3
  • Journal article (peer-reviewed)abstract
    • Rosenqvist and Hall (2019), developed a proof-of-concept modeling capability that incorporates a detailed 3D structure of Earth's electrical conductivity in a geomagnetically induced current estimation procedure (GIC-SMAP). The model was verified based on GIC measurements in northern Sweden. The study showed that southern Sweden is exposed to stronger electric fields due to a combined effect of low crustal conductivity and the influence of the surrounding coast. This study aims at further verifying the model in this region. GIC measurements on a power line at the west coast of southern Sweden are utilized. The location of the transmission line was selected to include coast effects at the ocean-land interface to investigate the importance of using 3D induction modeling methods. The model is used to quantify the hazard of severe GICs in this particular transmission line by using historic recordings of strong geomagnetic disturbances. To quantify a worst-case scenario GICs are calculated from modeled magnetic disturbances by the Space Weather Modeling Framework based on estimates for an idealized extreme interplanetary coronal mass ejection. The observed and estimated GIC based on the 3D GIC-SMAP procedure in the transmission line in southern Sweden are in good agreement. In contrast, 1D methods underestimate GICs by about 50%. The estimated GICs in the studied transmission line exceed 100 A for one of 14 historical geomagnetic storm intervals. The peak GIC during the sudden impulse phase of a "perfect" storm exceeds 300 A but depends on the locality of the station as the interplanetary magnetic cloud hits Earth.
  •  
5.
  • Carter, J. A., et al. (author)
  • Ground-based and additional science support for SMILE
  • 2024
  • In: Earth and Planetary Physics. - : Science Press. - 2096-3955. ; 8:1, s. 275-298
  • Journal article (peer-reviewed)abstract
    • The joint European Space Agency and Chinese Academy of Sciences Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) mission will explore global dynamics of the magnetosphere under varying solar wind and interplanetary magnetic field conditions, and simultaneously monitor the auroral response of the Northern Hemisphere ionosphere. Combining these large-scale responses with medium and fine-scale measurements at a variety of cadences by additional ground-based and space-based instruments will enable a much greater scientific impact beyond the original goals of the SMILE mission. Here, we describe current community efforts to prepare for SMILE, and the benefits and context various experiments that have explicitly expressed support for SMILE can offer. A dedicated group of international scientists representing many different experiment types and geographical locations, the Ground-based and Additional Science Working Group, is facilitating these efforts. Preparations include constructing an online SMILE Data Fusion Facility, the discussion of particular or special modes for experiments such as coherent and incoherent scatter radar, and the consideration of particular observing strategies and spacecraft conjunctions. We anticipate growing interest and community engagement with the SMILE mission, and we welcome novel ideas and insights from the solar-terrestrial community.
  •  
6.
  • Dimmock, Andrew P., et al. (author)
  • Backstreaming ions at a high Mach number interplanetary shock : Solar Orbiter measurements during the nominal mission phase
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 679
  • Journal article (peer-reviewed)abstract
    • Context: Solar Orbiter, a mission developed by the European Space Agency, explores in situ plasma across the inner heliosphere while providing remote-sensing observations of the Sun. The mission aims to study the solar wind, but also transient structures such as interplanetary coronal mass ejections and stream interaction regions. These structures often contain a leading shock wave that can differ from other plasma shock waves, such as those around planets. Importantly, the Mach number of these interplanetary shocks is typically low (1-3) compared to planetary bow shocks and most astrophysical shocks. However, our shock survey revealed that on 30 October 2021, Solar Orbiter measured a shock with an Alfven Mach number above 6, which can be considered high in this context.Aims: Our study examines particle observations for the 30 October 2021 shock. The particles provide clear evidence of ion reflection up to several minutes upstream of the shock. Additionally, the magnetic and electric field observations contain complex electromagnetic structures near the shock, and we aim to investigate how they are connected to ion dynamics. The main goal of this study is to advance our understanding of the complex coupling between particles and the shock structure in high Mach number regimes of interplanetary shocks.Methods: We used observations of magnetic and electric fields, probe-spacecraft potential, and thermal and energetic particles to characterize the structure of the shock front and particle dynamics. Furthermore, ion velocity distribution functions were used to study reflected ions and their coupling to the shock. To determine shock parameters and study waves, we used several methods, including cold plasma theory, singular-value decomposition, minimum variance analysis, and shock Rankine-Hugoniot relations. To support the analysis and interpretation of the experimental data, test-particle analysis, and hybrid particle in-cell simulations were used.Results: The ion velocity distribution functions show clear evidence of particle reflection in the form of backstreaming ions several minutes upstream. The shock structure has complex features at the ramp and whistler precursors. The backstreaming ions may be modulated by the complex shock structure, and the whistler waves are likely driven by gyrating ions in the foot. Supra-thermal ions up to 20 keV were observed, but shock-accelerated particles with energies above this were not.
  •  
7.
  • Dimmock, Andrew P., et al. (author)
  • Mirror Mode Storms Observed by Solar Orbiter
  • 2022
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:11
  • Journal article (peer-reviewed)abstract
    • Mirror modes (MMs) are ubiquitous in space plasma and grow from pressure anisotropy. Together with other instabilities, they play a fundamental role in constraining the free energy contained in the plasma. This study focuses on MMs observed in the solar wind by Solar Orbiter (SolO) for heliocentric distances between 0.5 and 1 AU. Typically, MMs have timescales from several to tens of seconds and are considered quasi-MHD structures. In the solar wind, they also generally appear as isolated structures. However, in certain conditions, prolonged and bursty trains of higher frequency MMs are measured, which have been labeled previously as MM storms. At present, only a handful of existing studies have focused on MM storms, meaning that many open questions remain. In this study, SolO has been used to investigate several key aspects of MM storms: their dependence on heliocentric distance, association with local plasma properties, temporal/spatial scale, amplitude, and connections with larger-scale solar wind transients. The main results are that MM storms often approach local ion scales and can no longer be treated as quasi-magnetohydrodynamic, thus breaking the commonly used long-wavelength assumption. They are typically observed close to current sheets and downstream of interplanetary shocks. The events were observed during slow solar wind speeds and there was a tendency for higher occurrence closer to the Sun. The occurrence is low, so they do not play a fundamental role in regulating ambient solar wind but may play a larger role inside transients.
  •  
8.
  • Dimmock, Andrew P., et al. (author)
  • Modeling the Geomagnetic Response to the September 2017 Space Weather Event Over Fennoscandia Using the Space Weather Modeling Framework : Studying the Impacts of Spatial Resolution
  • 2021
  • In: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 19:5
  • Journal article (peer-reviewed)abstract
    • We must be able to predict and mitigate against geomagnetically induced current (GIC) effects to minimize socio-economic impacts. This study employs the space weather modeling framework (SWMF) to model the geomagnetic response over Fennoscandia to the September 7-8, 2017 event. Of key importance to this study is the effects of spatial resolution in terms of regional forecasts and improved GIC modeling results. Therefore, we ran the model at comparatively low, medium, and high spatial resolutions. The virtual magnetometers from each model run are compared with observations from the IMAGE magnetometer network across various latitudes and over regional-scales. The virtual magnetometer data from the SWMF are coupled with a local ground conductivity model which is used to calculate the geoelectric field and estimate GICs in a Finnish natural gas pipeline. This investigation has lead to several important results in which higher resolution yielded: (1) more realistic amplitudes and timings of GICs, (2) higher amplitude geomagnetic disturbances across latitudes, and (3) increased regional variations in terms of differences between stations. Despite this, substorms remain a significant challenge to surface magnetic field prediction from global magnetohydrodynamic modeling. For example, in the presence of multiple large substorms, the associated large-amplitude depressions were not captured, which caused the largest model-data deviations. The results from this work are of key importance to both modelers and space weather operators. Particularly when the goal is to obtain improved regional forecasts of geomagnetic disturbances and/or more realistic estimates of the geoelectric field.
  •  
9.
  • Dimmock, Andrew P., et al. (author)
  • The Response of the Venusian Plasma Environment to the Passage of an ICME : Hybrid Simulation Results and Venus Express Observations
  • 2018
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:5, s. 3580-3601
  • Journal article (peer-reviewed)abstract
    • Owing to the heritage of previous missions such as the Pioneer Venus Orbiter and Venus Express, the typical global plasma environment of Venus is relatively well understood. On the other hand, this is not true for more extreme driving conditions such as during passages of interplanetary coronal mass ejections (ICMEs). One of the outstanding questions is how do ICMEs, either the ejecta or sheath portions, impact (1) the Venusian magnetic topology and (2) escape rates of planetary ions? One of the main issues encountered when addressing these problems is the difficulty of inferring global dynamics from single spacecraft obits; this is where the benefits of simulations become apparent. In the present study, we present a detailed case study of an ICME interaction with Venus on 5 November 2011 in which the magnetic barrier reached over 250 nT. We use both Venus Express observations and hybrid simulation runs to study the impact on the field draping pattern and the escape rates of planetary O+ ions. The simulation showed that the magnetic field line draping pattern around Venus during the ICME is similar to that during typical solar wind conditions and that O+ ion escape rates are increased by approximately 30% due to the ICME. Moreover, the atypically large magnetic barrier appears to manifest from a number of factors such as the flux pileup, dayside compression, and the driving time from the ICME ejecta.
  •  
10.
  • Hoilijoki, S., et al. (author)
  • Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without Positive IMF Bx Component During Southward IMF
  • 2019
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 124:6, s. 4037-4048
  • Journal article (peer-reviewed)abstract
    • This paper describes properties and behavior of magnetic reconnection and flux transfer events (FTEs) on the dayside magnetopause using the global hybrid-Vlasov code Vlasiator. We investigate two simulation runs with and without a sunward (positive)B-x component of the interplanetary magnetic field (IMF) when the IMF is southward. The runs are two-dimensional in real space in the noon-midnight meridional (polar) plane and three-dimensional in velocity space. Solar wind input parameters are identical in the two simulations with the exception that the IMF is purely southward in one but tilted 45 degrees toward the Sun in the other. In the purely southward case (i.e., without B-x) the magnitude of the magnetos heath magnetic field component tangential to the magnetopause is larger than in the run with a sunward tilt. This is because the shock normal is perpendicular to the IMF at the equatorial plane, whereas in the other run the shock configuration is oblique and a smaller fraction of the total IMF strength is compressed at the shock crossing. Hence, the measured average and maximum reconnection rate are larger in the purely southward run. The run with tilted IMF also exhibits a north-south asymmetry in the tangential magnetic field caused by the different angle between the IMF and the bow shock normal north and south of the equator. Greater north-south asymmetries are seen in the FTE occurrence rate, size, and velocity as well; FTEs moving toward the Southern Hemisphere are larger in size and observed less frequently than FTEs in the Northern Hemisphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 51

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view