SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Djonov Valentin) "

Sökning: WFRF:(Djonov Valentin)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nowak-Sliwinska, Patrycja, et al. (författare)
  • Consensus guidelines for the use and interpretation of angiogenesis assays
  • 2018
  • Ingår i: Angiogenesis. - : Springer. - 0969-6970 .- 1573-7209. ; 21:3, s. 425-532
  • Forskningsöversikt (refereegranskat)abstract
    • The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
  •  
2.
  • Räsänen, Markus, et al. (författare)
  • VEGF-B Promotes Endocardium-Derived Coronary Vessel Development and Cardiac Regeneration
  • 2021
  • Ingår i: Circulation. - : Wolters Kluwer. - 0009-7322 .- 1524-4539. ; 143:1, s. 65-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Recent discoveries have indicated that, in the developing heart, sinus venosus and endocardium provide major sources of endothelium for coronary vessel growth that supports the expanding myocardium. Here we set out to study the origin of the coronary vessels that develop in response to vascular endothelial growth factor B (VEGF-B) in the heart and the effect of VEGF-B on recovery from myocardial infarction.Methods:We used mice and rats expressing a VEGF-B transgene, VEGF-B-gene–deleted mice and rats, apelin-CreERT, and natriuretic peptide receptor 3–CreERT recombinase-mediated genetic cell lineage tracing and viral vector–mediated VEGF-B gene transfer in adult mice. Left anterior descending coronary vessel ligation was performed, and 5-ethynyl-2’-deoxyuridine–mediated proliferating cell cycle labeling; flow cytometry; histological, immunohistochemical, and biochemical methods; single-cell RNA sequencing and subsequent bioinformatic analysis; microcomputed tomography; and fluorescent- and tracer-mediated vascular perfusion imaging analyses were used to study the development and function of the VEGF-B–induced vessels in the heart.Results:We show that cardiomyocyte overexpression of VEGF-B in mice and rats during development promotes the growth of novel vessels that originate directly from the cardiac ventricles and maintain connection with the coronary vessels in subendocardial myocardium. In adult mice, endothelial proliferation induced by VEGF-B gene transfer was located predominantly in the subendocardial coronary vessels. Furthermore, VEGF-B gene transduction before or concomitantly with ligation of the left anterior descending coronary artery promoted endocardium-derived vessel development into the myocardium and improved cardiac tissue remodeling and cardiac function.Conclusions:The myocardial VEGF-B transgene promotes the formation of endocardium-derived coronary vessels during development, endothelial proliferation in subendocardial myocardium in adult mice, and structural and functional rescue of cardiac tissue after myocardial infarction. VEGF-B could provide a new therapeutic strategy for cardiac neovascularization after coronary occlusion to rescue the most vulnerable myocardial tissue.
  •  
3.
  • Sabine, Amelie, et al. (författare)
  • FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature
  • 2015
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 125:10, s. 3861-3877
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.
  •  
4.
  • Schültke, Elisabeth, et al. (författare)
  • Microbeam radiation therapy - Grid therapy and beyond : A clinical perspective
  • 2017
  • Ingår i: British Journal of Radiology. - : British Institute of Radiology. - 0007-1285 .- 1748-880X. ; 90:1078
  • Forskningsöversikt (refereegranskat)abstract
    • Microbeam irradiation is spatially fractionated radiation on a micrometer scale. Microbeam irradiation with therapeutic intent has become known as microbeam radiation therapy (MRT). The basic concept of MRT was developed in the 1980s, but it has not yet been tested in any human clinical trial, even though there is now a large number of animal studies demonstrating its marked therapeutic potential with an exceptional normal tissue sparing effect. Furthermore, MRT is conceptually similar to macroscopic grid based radiation therapy which has been used in clinical practice for decades. In this review, the potential clinical applications of MRT are analysed for both malignant and non-malignant diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy