SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dombovari Aron) "

Search: WFRF:(Dombovari Aron)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mohl, Melinda, et al. (author)
  • Titania nanofibers in gypsum composites : an antibacterial and cytotoxicology study
  • 2014
  • In: Journal of Material Chemistry B. - : Royal Society of Chemistry. - 2050-750X .- 2050-7518. ; 2:10, s. 1307-1316
  • Journal article (peer-reviewed)abstract
    • Further developments of antibacterial coatings based on photocatalytic nanomaterials could be a promising route towards potential environmentally friendly applications in households, public buildings and health care facilities. Hereby we describe a simple chemical approach to synthesize photocatalytic nanomaterial-embedded coatings using gypsum as a binder. Various types of TiO2 nanofiber-based photocatalytic materials (nitrogen-doped and/or palladium nanoparticle decorated) and their composites with gypsum were characterized by means of scanning (SEM) and transmission (TEM) electron microscopy as well as electron and X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) techniques. These gypsum-based composites can be directly applied as commercially available paints on indoor walls. Herein we report that surfaces coated with photocatalytic composites exhibit excellent antimicrobial properties by killing both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) under blue light. In the case of MSSA cells, the palladium nanoparticle-decorated and nitrogen-doped TiO2 composites demonstrated the highest antimicrobial activity. For the MRSA strain even pure gypsum samples were proven to be efficient in eradicating Gram-positive human pathogens. The cytotoxicity of freestanding TiO2 nanofibers was revealed by analyzing the viability of HeLa cells using MTT and fluorescent cell assays.
  •  
2.
  • Alene Asres, Georgies, et al. (author)
  • A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor
  • 2016
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 6:25610
  • Journal article (peer-reviewed)abstract
    • In this work, WS2 nanowire-nanoflake hybrids are synthesized by the sulfurization of hydrothermally grown WO3 nanowires. The influence of temperature on the formation of products is optimized to grow WS2 nanowires covered with nanoflakes. Current-voltage and resistance-temperature measurements carried out on random networks of the nanostructures show nonlinear characteristics and negative temperature coefficient of resistance indicating that the hybrids are of semiconducting nature. Bottom gated field effect transistor structures based on random networks of the hybrids show only minor modulation of the channel conductance upon applied gate voltage, which indicates poor electrical transport between the nanowires in the random films. On the other hand, the photo response of channel current holds promise for cost-efficient solution process fabrication of photodetector devices working in the visible spectral range.
  •  
3.
  • Asres, Georgies Alene, et al. (author)
  • High photoresponse of individual WS2 nanowire-nanoflake hybrid materials
  • 2018
  • In: Applied Physics Letters. - : AMER INST PHYSICS. - 0003-6951 .- 1077-3118. ; 112:23
  • Journal article (peer-reviewed)abstract
    • van der Waals solids have been recognized as highly photosensitive materials that compete conventional Si and compound semiconductor based devices. While 2-dimensional nanosheets of single and multiple layers and 1-dimensional nanowires of molybdenum and tungsten chalcogenides have been studied, their nanostructured derivatives with complex morphologies are not explored yet. Here, we report on the electrical and photosensitive properties of WS2 nanowire-nanoflake hybrid materials we developed lately. We probe individual hybrid nanostructured particles along the structure using focused ion beam deposited Pt contacts. Further, we use conductive atomic force microscopy to analyze electrical behavior across the nanostructure in the transverse direction. The electrical measurements are complemented by in situ laser beam illumination to explore the photoresponse of the nanohybrids in the visible optical spectrum. Photodetectors with responsivity up to similar to 0.4 AW(-1) are demonstrated outperforming graphene as well as most of the other transition metal dichalcogenide based devices. Published by AIP Publishing.
  •  
4.
  • Asres, Georgies Alene, et al. (author)
  • Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials
  • 2018
  • In: Nano Reseach. - : Springer. - 1998-0124 .- 1998-0000. ; 11:8, s. 4215-4224
  • Journal article (peer-reviewed)abstract
    • Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH3, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 ppm-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety.
  •  
5.
  • Ngoc Pham, Tung, et al. (author)
  • Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties : from environmental to electrical applications
  • 2014
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 4
  • Journal article (peer-reviewed)abstract
    • In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ,4 m2 g21 to ,345 m2 g21 , while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ,40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (.70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 6 0.07), while piezoresistive measurements show very high gauge factors (from ,20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view