SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Duan Huiling) "

Search: WFRF:(Duan Huiling)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2019
  • Journal article (peer-reviewed)
  •  
2.
  • Ho, Joshua W. K., et al. (author)
  • Comparative analysis of metazoan chromatin organization
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 512:7515, s. 449-U507
  • Journal article (peer-reviewed)abstract
    • Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms(1-3). Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths(4,5). To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.
  •  
3.
  • Ji, Qinglei, et al. (author)
  • A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation
  • 2018
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 8
  • Journal article (peer-reviewed)abstract
    • 3D-printing (3DP) technology has been developing rapidly. However, limited studies on the contribution of 3DP technology, especially multimaterial 3DP technology, to droplet-microfluidics have been reported. In this paper, multimaterial 3D-printed devices for the pneumatic control of emulsion generation have been reported. A 3D coaxial flexible channel with other rigid structures has been designed and printed monolithically. Numerical and experimental studies have demonstrated that this flexible channel can be excited by the air pressure and then deform in a controllable way, which can provide the active control of droplet generation. Furthermore, a novel modular microfluidic device for double emulsion generation has been designed and fabricated, which consists of three modules: function module, T-junction module, and co-flow module. The function module can be replaced by (1) Single-inlet module, (2) Pneumatic Control Unit (PCU) module and (3) Dual-inlet module. Different modules can be easily assembled for different double emulsion production. By using the PCU module, double emulsions with different number of inner droplets have been successfully produced without complicated operation of flow rates of different phases. By using single and dual inlet module, various double emulsions with different number of encapsulated droplets or encapsulated droplets with different compositions have been successfully produced, respectively.
  •  
4.
  • Zhang, Jia Ming, et al. (author)
  • An integrated micro-millifluidic processing system.
  • 2018
  • In: Lab on a chip. - : Royal Society of Chemistry. - 1473-0197 .- 1473-0189. ; 18:22, s. 3393-3404
  • Journal article (peer-reviewed)abstract
    • The development of integrated microfluidic systems/platforms concerns many fields. Current remarkable integrated systems based on stacking multi-layer polydimethylsiloxane (PDMS) require complicated fabrication and operation and still remain challenging. We propose a novel micro-millifluidic processing system (MPS) comprising three core modules: a motherboard, a control panel and microfluidic chips. Fluids are handled in sub-millichannels in a motherboard and functional operations occur in microchannels in microfluidic chips. A motherboard with versatile functional units for fluid handling was monolithically fabricated via multimaterial 3D printing, which avoids multi-layer structures, and the major disadvantage of current 3D printing, i.e. low resolution, has been overcome by integrating novel microfluidic chips based on our developed maskless lithography platform. Both numerical and experimental studies were conducted to validate our system. Potential applications such as droplet generation and distribution, microfluidic mixing and simple bacterial resistance tests have been demonstrated via our MPS.
  •  
5.
  • Zhang, Jiaming, et al. (author)
  • Three-Dimensional Printed Devices in Droplet Microfluidics
  • 2019
  • In: Micromachines. - : MDPI. - 2072-666X. ; 10:11
  • Research review (peer-reviewed)abstract
    • Droplet microfluidics has become the most promising subcategory of microfluidics since it contributes numerous applications to diverse fields. However, fabrication of microfluidic devices for droplet formation, manipulation and applications is usually complicated and expensive. Three-dimensional printing (3DP) provides an exciting alternative to conventional techniques by simplifying the process and reducing the cost of fabrication. Complex and novel structures can be achieved via 3DP in a simple and rapid manner, enabling droplet microfluidics accessible to more extensive users. In this article, we review and discuss current development, opportunities and challenges of applications of 3DP to droplet microfluidics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5
Type of publication
journal article (4)
research review (1)
Type of content
peer-reviewed (5)
Author/Editor
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
show more...
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Kundaje, Anshul (1)
Wang, Jun (1)
Pollesello, Piero (1)
Kellis, Manolis (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
Zhang, Weijia (1)
Li, Jian (1)
Marinello, Francesco (1)
Frilander, Mikko J. (1)
Wei, Pan (1)
Badie, Christophe (1)
Zhao, Jing (1)
Li, You (1)
Bansal, Abhisheka (1)
Rahman, Proton (1)
Parchi, Piero (1)
Polz, Martin (1)
Ho, Joshua W. K. (1)
Tolstorukov, Michael ... (1)
Plachetka, Annette (1)
Kharchenko, Peter V. (1)
Gu, Tingting (1)
Minoda, Aki (1)
Riddle, Nicole C. (1)
show less...
University
Royal Institute of Technology (3)
University of Gothenburg (1)
Umeå University (1)
Uppsala University (1)
Halmstad University (1)
Stockholm University (1)
show more...
Lund University (1)
Chalmers University of Technology (1)
Karolinska Institutet (1)
show less...
Language
English (5)
Research subject (UKÄ/SCB)
Medical and Health Sciences (2)
Natural sciences (1)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view