SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dumergue M.) "

Search: WFRF:(Dumergue M.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gryzlova, E. V., et al. (author)
  • Influence of an atomic resonance on the coherent control of the photoionization process
  • 2022
  • In: Physical Review Research. - 2643-1564. ; 4:3
  • Journal article (peer-reviewed)abstract
    • In coherent control schemes, pathways connecting an initial and a final state can be independently controlled by manipulating the complex amplitudes of their transition matrix elements. For paths characterized by the absorption of multiple photons, these quantities depend on the magnitude and phase between the intermediate steps, and are expected to be strongly affected by the presence of resonances. We investigate the coherent control of the photoemission process in neon using a phase-controlled two-color extreme ultraviolet pulse with frequency in proximity of an excited energy state. Using helium as a reference, we show that the presence of such a resonance in neon modifies the amplitude and phase of the asymmetric emission of photoelectrons. Theoretical simulations based on perturbation theory are in fair agreement with the experimental observations.
  •  
2.
  • Makos, I., et al. (author)
  • Attosecond photoelectron spectroscopy using high-harmonic generation and seeded free-electron lasers
  • 2023
  • In: 2023 Photonics North, PN 2023. - 9798350326734
  • Conference paper (peer-reviewed)abstract
    • In this work, we use attosecond time-resolved techniques to investigate photoionization dynamics on its natural timescale, employing both high harmonic generation and seeded free-electron lasers to generate extreme ultraviolet attosecond pulse trains for our studies. With the former approach, we examine the role of nuclear motion in molecular photoionization dynamics, while with the latter we introduce a novel attosecond timing tool for single-shot characterization of the relative phase between the XUV and the infrared field.
  •  
3.
  • Maroju, Praveen Kumar, et al. (author)
  • Attosecond coherent control of electronic wave packets in two-colour photoionization using a novel timing tool for seeded free-electron laser
  • 2023
  • In: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 17, s. 200-207
  • Journal article (peer-reviewed)abstract
    • In ultrafast spectroscopy, the temporal resolution of time-resolved experiments depends on the duration of the pump and probe pulses, and on the control and characterization of their relative synchronization. Free-electron lasers operating in the extreme ultraviolet and X-ray spectral regions deliver pulses with femtosecond and attosecond duration in a broad array of pump-probe configurations to study a wide range of physical processes. However, this flexibility, together with the large dimensions and high complexity of the experimental set-ups, limits control of the temporal delay to the femtosecond domain, thus precluding a time resolution below the optical cycle. Here we demonstrate a novel single-shot technique able to determine the relative synchronization between an attosecond pulse train-generated by a seeded free-electron laser-and the optical oscillations of a near-infrared field, with a resolution of one atomic unit (24 as). Using this attosecond timing tool, we report the first example of attosecond coherent control of photoionization in a two-colour field by manipulating the phase of high-order near-infrared transitions.
  •  
4.
  • Maroju, P. K., et al. (author)
  • Analysis of two-color photoelectron spectroscopy for attosecond metrology at seeded free-electron lasers
  • 2021
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:4
  • Journal article (peer-reviewed)abstract
    • The generation of attosecond pulse trains at free-electron lasers opens new opportunities in ultrafast science, as it gives access, for the first time, to reproducible, programmable, extreme ultraviolet (XUV) waveforms with high intensity. In this work, we present a detailed analysis of the theoretical model underlying the temporal characterization of the attosecond pulse trains recently generated at the free-electron laser FERMI. In particular, the validity of the approximations used for the correlated analysis of the photoelectron spectra generated in the two-color photoionization experiments are thoroughly discussed. The ranges of validity of the assumptions, in connection with the main experimental parameters, are derived.
  •  
5.
  • Kühn, Sergei, et al. (author)
  • The ELI-ALPS facility : The next generation of attosecond sources
  • 2017
  • In: Journal of Physics B: Atomic, Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 50:13
  • Research review (peer-reviewed)abstract
    • This review presents the technological infrastructure that will be available at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) international facility. ELI-ALPS will offer to the international scientific community ultrashort pulses in the femtosecond and attosecond domain for time-resolved investigations with unprecedented levels of high quality characteristics. The laser sources and the attosecond beamlines available at the facility will make attosecond technology accessible for scientists lacking access to these novel tools. Time-resolved investigation of systems of increasing complexity is envisaged using the end stations that will be provided at the facility.
  •  
6.
  •  
7.
  • Makos, I, et al. (author)
  • Α 10-gigawatt attosecond source for non-linear XUV optics and XUV-pump-XUV-probe studies
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • The quantum mechanical motion of electrons and nuclei in systems spatially confined to the molecular dimensions occurs on the sub-femtosecond to the femtosecond timescales respectively. Consequently, the study of ultrafast electronic and, in specific cases, nuclear dynamics requires the availability of light pulses with attosecond (asec) duration and of sufficient intensity to induce two-photon processes, essential for probing the intrinsic system dynamics. The majority of atoms, molecules and solids absorb in the extreme-ultraviolet (XUV) spectral region, in which the synthesis of the required attosecond pulses is feasible. Therefore, the XUV spectral region optimally serves the study of such ultrafast phenomena. Here, we present a detailed review of the first 10-GW class XUV attosecond source based on laser driven high harmonic generation in rare gases. The pulse energy of this source largely exceeds other laser driven attosecond sources and is comparable to the pulse energy of femtosecond Free-Electron-Laser (FEL) XUV sources. The measured pulse duration in the attosecond pulse train is 650 ± 80 asec. The uniqueness of the combined high intensity and short pulse duration of the source is evidenced in non-linear XUV-optics experiments. It further advances the implementation of XUV-pump-XUV-probe experiments and enables the investigation of strong field effects in the XUV spectral region.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view