SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dumortier Francoise) "

Search: WFRF:(Dumortier Francoise)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Demeke, Mekonnen M., et al. (author)
  • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
  • 2013
  • In: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 6
  • Journal article (peer-reviewed)abstract
    • Background: The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production. Results: An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate. Conclusions: An industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates.
  •  
2.
  • Mukherjee, Vaskar, 1986, et al. (author)
  • Polygenic analysis of high osmotolerance in Saccharomyces cerevisiae
  • 2015
  • In: Abstracts of the 27th International Conference on Yeast Genetics and Molecular Biology. - : Wiley. ; 32:S1
  • Conference paper (other academic/artistic)abstract
    • The main objective of our research is to investigate the molecular basis of superior osmotolerance in Saccharomyces cerevisiae and to identify unique mutations in the causative genes that are responsible for superior fermentation performance under very high gravity fermentation. We employed pooled-segregant whole-genome sequence analysis, a technology for efficient polygenic analysis of complex traits developed in our laboratory. For that purpose, a haploid segregant of an osmotolerant yeast strain with the best superior phenotype has been crossed with a haploid segregant from an unrelated industrial strain with a comparatively inferior phenotype. The diploid hybrid has been sporulated and about 30 segregants with the superior phenotype have been selected to construct the superior pool. About 30 segregants were also randomly selected regardless of their phenotype to construct the unselected pool. Pooled genomic DNA extraction was performed for both pools separately and submitted to custom whole-genome sequence analysis. The two parent strains have also been sent for sequencing to determine all SNPs. The variant frequency of the SNPs in the pool has been used to map the QTLs containing the causative mutations in the genome. Several clear QTLs with different strength have been identified in this way. This is followed by the application of reciprocal hemizygosity analysis to identify the causative gene(s) with the responsible mutation in the mapped loci. Finally the identified causative mutations will be introduced in to industrial strains to improve the very high gravity bioethanol fermentation performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view