SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dupraz P) "

Search: WFRF:(Dupraz P)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ferrario, M., et al. (author)
  • IRIDE : Interdisciplinary research infrastructure based on dual electron linacs and lasers
  • 2014
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 740, s. 138-146
  • Journal article (peer-reviewed)abstract
    • This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. [RIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.
  •  
2.
  • Pace, A., et al. (author)
  • Formation of stromatolite lamina at the interface of oxygenic-anoxygenic photosynthesis
  • 2018
  • In: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 16:4, s. 378-398
  • Journal article (peer-reviewed)abstract
    • In modern stromatolites, mineralization results from a complex interplay between microbial metabolisms, the organic matrix, and environmental parameters. Here, we combined biogeochemical, mineralogical, and microscopic analyses with measurements of metabolic activity to characterize the mineralization processes and products in an emergent (<18months) hypersaline microbial mat. While the nucleation of Mg silicates is ubiquitous in the mat, the initial formation of a Ca-Mg carbonate lamina depends on (i) the creation of a high-pH interface combined with a major change in properties of the exopolymeric substances at the interface of the oxygenic and anoxygenic photoautotrophic layers and (ii) the synergy between two major players of sulfur cycle, purple sulfur bacteria, and sulfate-reducing bacteria. The repetition of this process over time combined with upward growth of the mat is a possible pathway leading to the formation of a stromatolite.
  •  
3.
  • Sforna, M. C., et al. (author)
  • Patterns of metal distribution in hypersaline microbialites during early diagenesis : Implications for the fossil record
  • 2017
  • In: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 15:2, s. 259-279
  • Journal article (peer-reviewed)abstract
    • The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-m) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record.
  •  
4.
  •  
5.
  • Reid, R. Pamela, et al. (author)
  • Microbialite Accretion and Growth : Lessons from Shark Bay and the Bahamas
  • 2024
  • In: Annual Review of Marine Science. - 1941-1405 .- 1941-0611. ; 16, s. 487-511
  • Research review (peer-reviewed)abstract
    • Microbialites provide geological evidence of one of Earth's oldest ecosystems, potentially recording long-standing interactions between coevolving life and the environment. Here, we focus on microbialite accretion and growth and consider how environmental and microbial forces that characterize living ecosystems in Shark Bay and the Bahamas interact to form an initial microbialite architecture, which in turn establishes distinct evolutionary pathways. A conceptual three-dimensional model is developed for microbialite accretion that emphasizes the importance of a dynamic balance between extrinsic and intrinsic factors in determining the initial architecture. We then explore how early taphonomic and diagenetic processes modify the initial architecture, culminating in various styles of preservation in the rock record. The timing of lithification of microbial products is critical in determining growth patterns and preservation potential. Study results have shown that all microbialites are not created equal; the unique evolutionary history of an individual microbialite matters.
  •  
6.
  • Visscher, Pieter T., et al. (author)
  • Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean
  • 2020
  • In: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 1:1
  • Journal article (peer-reviewed)abstract
    • Arsenic-consuming microbes of the hypersaline Laguna La Brava in Chile may be an analogue for early life during the anoxic conditions of the Archean, according to geochemical and metagenomic analyses of the extant microbial mats The earliest evidence of life captured in lithified microbial mats (microbialites) predates the onset of oxygen production and yet, modern oxygenic mats are often studied as analogs based on their morphological similarity and their sedimentological and biogeochemical context. Despite their structural similarity to fossil microbialites, the presence of oxygen in most modern microbial mats disqualifies them as appropriate models for understanding early Earth conditions. Here we describe the geochemistry, element cycling and lithification potential of microbial mats that thrive under permanently anoxic conditions in arsenic laden, sulfidic waters feeding Laguna La Brava, a hypersaline lake in the Salar de Atacama of northern Chile. We propose that these anoxygenic, arsenosulfidic, phototrophic mats are a link to the Archean because of their distinctive metabolic adaptations to a reducing environment with extreme conditions of high UV, vast temperature fluctuations, and alkaline water inputs from combined meteoric and volcanic origin, reminiscent of early Earth.
  •  
7.
  • Vitek, Brooke E., et al. (author)
  • Bidirectional fabric evolution in Hamelin Pool microbialites, Shark Bay, Western Australia
  • 2023
  • In: The Depositional Record. - 2055-4877 .- 2055-4877. ; 9:4, s. 959-988
  • Journal article (peer-reviewed)abstract
    • Hamelin Pool, Shark Bay, Western Australia hosts the world's largest and most extensive assemblages of living marine microbialites, comparable in size and shape to ancient structures found throughout the fossil record. Documented here are the internal fabrics of modern microbialites collected throughout Hamelin Pool. Mesoscale and microscale observations of microbialite polished slabs and thin section scans, optical microscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy formed the basis for a fabric classification system that combines accretionary mat type with microfabric. Accretionary mat types included pustular, smooth, colloform, as well as ‘transitional’ mats that are a cross between pustular and smooth mats. Mapping of fabrics in 45 microbialite heads indicated bidirectional evolution. An upward progression of fabrics corresponded to changes in mat type as the head grew upward into shallower water. A downward evolution of microfabrics occurred as surface mats transitioned into the subsurface of the microbialite structure. Downward microfabric evolution occurred as a result of early taphonomic processes, and involved a progression from the original depositional architecture to subsequent stages of “Micritic Thickening”, and finally, “Cement Infilling”. The observed bidirectional evolution of microbialite microfabrics within Hamelin Pool offers a conceptual framework for the study of modern microbialites, not simply as the sole product of accretionary mat types but rather as the combined result of the activity of surface mats and their taphonomic evolution. Early taphonomic processes induce further lithification of the microbialites which may enhance preservation potential in the geological record.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view