SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Eastwood Jonathan) "

Search: WFRF:(Eastwood Jonathan)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mahajan, Anubha, et al. (author)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Journal article (peer-reviewed)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
2.
  • Krasnoselskikh, Vladimir, et al. (author)
  • ICARUS : in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter
  • 2022
  • In: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 277-315
  • Journal article (peer-reviewed)abstract
    • The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating of solar wind Up to the Sun), a mother-daughter satellite mission, proposed in response to the ESA “Voyage 2050” Call, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind, and the entire heliosphere. Reaching this goal will be a Rosetta Stone step, with results that are broadly applicable within the fields of space plasma physics and astrophysics. Within ESA’s Cosmic Vision roadmap, these science goals address Theme 2: “How does the Solar System work?” by investigating basic processes occurring “From the Sun to the edge of the Solar System”. ICARUS will not only advance our understanding of the plasma environment around our Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution, and flows directly in the regions in which the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion altitude of 1 solar radius and will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow winds are generated. It will probe the local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous, contextual information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive, collect, and store information transmitted from ICARUS I during its closest approach to the Sun. It will also perform preliminary data processing before transmitting it to Earth. Performing such unique in situ observations in the area where presumably hazardous solar energetic particles are energized, ICARUS will provide fundamental advances in our capabilities to monitor and forecast the space radiation environment. Therefore, the results from the ICARUS mission will be extremely crucial for future space explorations, especially for long-term crewed space missions.
  •  
3.
  • Middeldorp, Christel M., et al. (author)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • In: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Journal article (peer-reviewed)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
4.
  • Nakamura, Rumi, et al. (author)
  • Structure of the Current Sheet in the 11 July 2017 Electron Diffusion Region Event
  • 2019
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 124:2, s. 1173-1186
  • Journal article (peer-reviewed)abstract
    • The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail. Plain Language Summary Magnetic reconnection is the process by which magnetic field lines coming from one region are broken and reconnected with magnetic field lines coming from another region. The simplest descriptions of magnetic reconnection are two dimensional, and a number of theoretical predictions have been made using the two-dimensional assumption. We study a magnetic reconnection event observed by the Magnetospheric Multiscale spacecraft on 11 July 2017 and find approximate agreement between the observations and the predictions of a two-dimensional model. The agreement includes the scale size of the reconnection region, details of the particle orbits, and the rate of reconnection.
  •  
5.
  • Norgren, Cecilia (author)
  • Electron-scale physics in space plasma : Thin boundaries and magnetic reconnection
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • Most of the observable Universe consists of plasma, a kind of ionized gas that interacts with electric and magnetic fields. Large volumes of space are filled with relatively uniform plasmas that convect with the magnetic field. This is the case for the solar wind, and large parts of planetary magnetospheres, the volumes around the magnetized planets that are dominated by the planet's internal magnetic field. Large plasma volumes in space are often separated by thin extended boundaries. Many small-scale processes in these boundaries mediate large volumes of plasma and energy between the adjacent regions, and can lead to global changes in the magnetic field topology. To understand how large-scale plasma regions are created, maintained, and how they can mix, it is important understand how the processes in the thin boundaries separating them work.A process in these thin boundaries that may result in large scale changes in magnetic field topology is magnetic reconnection. Magnetic reconnection is a fundamental process that transfers energy from the magnetic field to particles, and occurs both in laboratory and astrophysical plasmas. It is a multi-scale process involving both ions and electrons, but is only partly understoodSpace above the Earth's ionosphere is essentially collisionless, meaning that information, energy, and mass transfer have to be mediated through means other than collisions. In a plasma, this can happen through interactions between particles and electrostatic and electromagnetic waves. Instabilities that excites waves can therefore play a crucial role in the energy transfer between fields and particles, and different particle populations, for example between ions and electrons.In this thesis we have used data from ESA's four Cluster and NASA's four Magnetospheric Multiscale (MMS) satellites to study small-scale – the scale where details of the electron motion becomes important – processes in thin boundaries around Earth. With Cluster, we have made detailed measurements of lower-hybrid waves and electrostatic solitary waves to better understand what role these waves can play in collisionless energy transfer. Here, the use of at least two satellites was crucial to estimate the phase speed of the waves, and associated wavelength, as well as electrostatic potential of the waves. With MMS, we have studied the electron dynamics within thin boundaries undergoing magnetic reconnection, and found that the current is often carried by non-gyrotropic parts of the electron distribution. The non-gyrotropy was caused by finite gyroradius effects due to sharp gradients in the magnetic field and plasma density and temperature. Here, the use of four satellites was crucial to deduce the spatial structure and thickness of the boundaries. Before the MMS mission, these observations of electron dynamics have never been possible in space, due to instrumental limitations of previous missions. All these findings have led to better understanding of both our near-space environment and plasma physics in general.
  •  
6.
  • Opgenoorth, Hermann J., et al. (author)
  • Earth's geomagnetic environment : progress and gaps in understanding, prediction, and impacts
  • 2024
  • In: Advances in Space Research. - : Elsevier. - 0273-1177 .- 1879-1948.
  • Journal article (peer-reviewed)abstract
    • Understanding of Earth's geomagnetic environment is critical to mitigating the space weather impacts caused by disruptive geoelectric fields in power lines and other conductors on Earth's surface. These impacts are the result of a chain of processes driven by the solar wind and linking Earth's magnetosphere, ionosphere, thermosphere and Earth's surface. Tremendous progress has been made over the last two decades in understanding the solar wind driving mechanisms, the coupling mechanisms connecting the magnetically controlled regions of near-Earth space, and the impacts of these collective processes on human technologies on Earth's surface. Studies of solar wind drivers have been focused on understanding the responses of the geomagnetic environment to spatial and temporal variations in the solar wind associated with Coronal Mass Ejections, Corotating Interaction Regions, Interplanetary Shocks, High-Speed Streams, and other interplanetary magnetic field structures. Increasingly sophisticated numerical models are able to simulate the magnetospheric response to the solar wind forcing associated with these structures. Magnetosphere-ionosphere-thermosphere coupling remains a great challenge, although new observations and sophisticated models that can assimilate disparate data sets have improved the ability to specify the electrodynamic properties of the high latitude ionosphere. The temporal and spatial resolution needed to predict the electric fields, conductivities, and currents in the ionosphere is driving the need for further advances. These parameters are intricately tied to auroral phenomena—energy deposition due to Joule heating and precipitating particles, motions of the auroral boundary, and ion outflow. A new view of these auroral processes is emerging that focuses on small-scale structures in the magnetosphere and their ionospheric effects, which may include the rapid variations in current associated with geomagnetically induced currents and the resulting perturbations to geoelectric fields on Earth's surface. Improvements in model development have paralleled the advancements in understanding, yielding coupled models that better replicate the spatial and temporal scales needed to simulate the interconnected domains. Many realizations of such multi-component systems are under development, each with its own limitations and advantages. Challenges remain in the ability of models to quantify uncertainties introduced by propagation of solar wind parameters, to account for numerical effects in model codes, and to handle the special conditions occurring during extreme events. The impacts to technical systems on the ground are highly sensitive to the local electric properties of Earth's surface, as well as to the specific technology at risk. Current research is focused on understanding the characteristics of geomagnetic disturbances that are important for geomagnetically induced currents, the development of earth conductivity models, the calculation of geoelectric fields, and the modeling of induced currents in the different affected systems. Assessing and mitigating the risks to technical systems requires quantitative knowledge of the range of values to be expected under all possible geomagnetic and technical conditions. Considering the progress that has been made in studying the chain of events leading to hazardous geomagnetic disturbances, the path forward will require concerted efforts to reveal missing physics, improve modeling capabilities, and deploy new observational assets. New understanding should be targeted to accurately quantify solar wind driving, magnetosphere-ionosphere-thermosphere coupling, and the impacts on specific technologies. The research, modeling, and observations highlighted here provide a framework for constructing a plan by which the international science community can comprehensively address the growing threat to human technologies caused by geomagnetic disturbances.
  •  
7.
  • Schwartz, Steven J., et al. (author)
  • Ion Kinetics in a Hot Flow Anomaly : MMS Observations
  • 2018
  • In: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 45:21, s. 11520-11529
  • Journal article (peer-reviewed)abstract
    • Hot Flow Anomalies (HFAs) are transients observed at planetary bow shocks, formed by the shock interaction with a convected interplanetary current sheet. The primary interpretation relies on reflected ions channeled upstream along the current sheet. The short duration of HFAs has made direct observations of this process difficult. We employ high resolution measurements by NASA's Magnetospheric Multiscale Mission to probe the ion microphysics within a HFA. Magnetospheric Multiscale Mission data reveal a smoothly varying internal density and pressure, which increase toward the trailing edge of the HFA, sweeping up particles trapped within the current sheet. We find remnants of reflected or other backstreaming ions traveling along the current sheet, but most of these are not fast enough to out-run the incident current sheet convection. Despite the high level of internal turbulence, incident and backstreaming ions appear to couple gyro-kinetically in a coherent manner. Plain Language Summary Shock waves in space are responsible for energizing particles and diverting supersonic flows around planets and other obstacles. Explosive events known as Hot Flow Anomalies (HFAs) arise when a rapid change in the interplanetary magnetic field arrives at the bow shock formed by, for example, the supersonic solar wind plasma flow from the Sun impinging on the Earth's magnetic environment. HFAs are known to produce impacts all the way to ground level, but the physics responsible for their formation occur too rapidly to be resolved by previous satellite missions. This paper employs NASA's fleet of four Magnetospheric Multiscale satellites to reveal for the first time clear, discreet populations of ions that interact coherently to produce the extreme heating and deflection.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7
Type of publication
journal article (6)
doctoral thesis (1)
Type of content
peer-reviewed (6)
other academic/artistic (1)
Author/Editor
Groop, Leif (2)
Ahlqvist, Emma (2)
Li, Jin (2)
Almgren, Peter (2)
Boeing, Heiner (1)
Rolandsson, Olov (1)
show more...
Straker, Leon (1)
Tuomi, Tiinamaija (1)
Jacobsson, Bo, 1960 (1)
Magnus, Per (1)
Fadista, Joao (1)
Salomaa, Veikko (1)
Mannisto, Satu (1)
Perola, Markus (1)
Lind, Lars (1)
Ingelsson, Martin (1)
Raitakari, Olli T (1)
Viikari, Jorma (1)
Heinrich, Joachim (1)
Koppelman, Gerard H. (1)
Melén, Erik (1)
Melander, Olle (1)
Cooper, Cyrus (1)
Sunyer, Jordi (1)
Melbye, Mads (1)
Richmond, Rebecca C. (1)
Nordestgaard, Borge ... (1)
Estivill, Xavier (1)
Soranzo, Nicole (1)
Sattar, Naveed (1)
Strachan, David P (1)
Deloukas, Panos (1)
Agapitov, Oleksiy (1)
Krasnoselskikh, Vlad ... (1)
Khotyaintsev, Yuri V ... (1)
Khotyaintsev, Yuri (1)
Balikhin, Michael (1)
Zhang, Hui (1)
Gauderman, W James (1)
Schulze, Matthias B. (1)
Robinson, Robert (1)
Franks, Paul W. (1)
Meidtner, Karina (1)
Wareham, Nicholas J. (1)
Larsson, Henrik, 197 ... (1)
Lichtenstein, Paul (1)
Stancáková, Alena (1)
Kuusisto, Johanna (1)
Isomaa, Bo (1)
Laakso, Markku (1)
show less...
University
Uppsala University (4)
Umeå University (2)
Royal Institute of Technology (2)
Lund University (2)
University of Gothenburg (1)
Örebro University (1)
show more...
Mid Sweden University (1)
Karolinska Institutet (1)
show less...
Language
English (7)
Research subject (UKÄ/SCB)
Natural sciences (5)
Medical and Health Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view