SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Eastwood Peter R.) "

Search: WFRF:(Eastwood Peter R.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zouganelis, I., et al. (author)
  • The Solar Orbiter Science Activity Plan : Translating solar and heliospheric physics questions into action
  • 2020
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
  •  
2.
  • Mahajan, Anubha, et al. (author)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Journal article (peer-reviewed)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
3.
  • Middeldorp, Christel M., et al. (author)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • In: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Journal article (peer-reviewed)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
4.
  • Ding, Ming, et al. (author)
  • Dairy consumption, systolic blood pressure, and risk of hypertension : Mendelian randomization study
  • 2017
  • In: The BMJ. - : BMJ Publishing Group Ltd. - 1756-1833 .- 0959-8138. ; 356
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. DESIGN Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable. SETTING CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. PARTICIPANTS Data from 22 studies with 171 213 participants, and an additional 10 published prospective studies with 26 119 participants included in the observational analysis. MAIN OUTCOME MEASURES The instrumental variable estimation was conducted using the ratio of coefficients approach. Using metaanalysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized. RESULTS Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval -0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (beta=1.35, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: beta=-0.21, 95% confidence interval -0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with -0.11 (95% confidence interval -0.20 to -0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11). CONCLUSION The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.
  •  
5.
  • Finegan, Donal P, et al. (author)
  • Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High-Speed Operando Tomography and Digital Volume Correlation
  • 2015
  • In: Advanced Science. - : Wiley. - 2198-3844.
  • Journal article (peer-reviewed)abstract
    • Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high-speed operando synchrotron X-ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real-time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral-wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time-lapse X-ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs.
  •  
6.
  • Taiwo, Oluwadamilola O., et al. (author)
  • In-Situ Examination of Microstructural Changes within a Lithium-Ion Battery Electrode Using Synchrotron X-ray Microtomography
  • 2015
  • In: ECS Transactions. - : The Electrochemical Society. - 1938-6737 .- 1938-5862. ; 69:18, s. 81-85
  • Conference paper (peer-reviewed)abstract
    • In this work, we use synchrotron X-ray microtomographic imaging to examine in-situ changes in a silicon / lithium half-cell before and after lithiation. We visualize volume expansion within the silicon electrode matrix and active particle fracturing as a result of the lithiation process. A change in volume fraction of silicon with respect to electrode state-of-charge was also characterized.
  •  
7.
  • Taiwo, Oluwadamilola O., et al. (author)
  • Investigating the evolving microstructure of lithium metal electrodes in 3D using X-ray computed tomography
  • 2017
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 19:33, s. 22111-22120
  • Journal article (peer-reviewed)abstract
    • The growth of electrodeposited lithium microstructures on metallic lithium electrodes has prevented their use in rechargeable lithium batteries due to early performance degradation and safety implications. Understanding the evolution of lithium microstructures during battery operation is crucial for the development of an effective and safe rechargeable lithium-metal battery. This study employs both synchrotron and laboratory X-ray computed tomography to investigate the morphological evolution of the surface of metallic lithium electrodes during a single cell discharge and over numerous cycles, respectively. The formation of surface pits and the growth of mossy lithium deposits through the separator layer are characterised in three-dimensions. This has provided insight into the microstructural evolution of lithium-metal electrodes during rechargeable battery operation, and further understanding of the importance of separator architecture in mitigating lithium dendrite growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7
Type of publication
journal article (6)
conference paper (1)
Type of content
peer-reviewed (7)
Author/Editor
Linneberg, Allan (3)
Pedersen, Oluf (3)
Hansen, Torben (3)
Uitterlinden, André ... (3)
Taiwo, Oluwadamilola ... (3)
Eastwood, David S. (3)
show more...
Lee, Peter D. (3)
Shearing, Paul R. (3)
Groop, Leif (2)
Ahlqvist, Emma (2)
Li, Jin (2)
Viikari, Jorma (2)
Nordestgaard, Borge ... (2)
Franks, Paul W. (2)
Almgren, Peter (2)
McCarthy, Mark I (2)
Grarup, Niels (2)
Orho-Melander, Marju (2)
Ridker, Paul M. (2)
Chasman, Daniel I. (2)
Chu, Audrey Y (2)
Mohlke, Karen L (2)
Rotter, Jerome I. (2)
Liu, Jun (2)
Yaghootkar, Hanieh (2)
Hall, Stephen (2)
Barroso, Ines (2)
Hattersley, Andrew T (2)
Mahajan, Anubha (2)
Sorensen, Thorkild I ... (2)
Lehtimaki, Terho (2)
Rich, Stephen S (2)
Psaty, Bruce M (2)
Pennell, Craig E (2)
Zeggini, Eleftheria (2)
Franco, Oscar H. (2)
Ntalla, Ioanna (2)
Frayling, Timothy M (2)
Hivert, Marie-France (2)
Wang, Carol A (2)
Kahonen, Mika (2)
Province, Michael A. (2)
Lindgren, Cecilia M. (2)
Morris, Andrew P. (2)
Magi, Reedik (2)
Robertson, Neil R. (2)
Varbo, Anette (2)
Eastwood, Peter R. (2)
Finegan, Donal P (2)
Brett, Dan J. L. (2)
show less...
University
Lund University (5)
Uppsala University (3)
Umeå University (2)
University of Gothenburg (1)
Royal Institute of Technology (1)
Örebro University (1)
show more...
Mid Sweden University (1)
Karolinska Institutet (1)
show less...
Language
English (7)
Research subject (UKÄ/SCB)
Medical and Health Sciences (3)
Natural sciences (2)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view