SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Edenharder Stefan) "

Search: WFRF:(Edenharder Stefan)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Amer, Eynas, et al. (author)
  • Stimulated Raman scattering detection for chemically specific time-resolved imaging of gases
  • 2016
  • In: Optics Express. - 1094-4087. ; 24:9, s. 9984-9993
  • Journal article (peer-reviewed)abstract
    • stimulated Raman scattering (SRS) imaging technique based on spatial modulation of the pump beam has been used to study gases. The SRS gain signal was separated from the Stokes beam background in the spatial frequency domain. The SRS signal shows linear behaviour with the gas pressure at a range from 1.0 to 8.0 bars. The signal is linearly proportional to the pump beam intensity while it is enhanced with increasing the Stokes beam intensity to a certain limit than it saturates. Further, the chemical specificity of the technique has been investigated. Two sharp peaks with line width at half maximum of about 0.30 nm have been obtained at Stokes beam wavelengths of 629.93 nm and 634.05 nm corresponding to the methane and ethylene gases, respectively. The results show that SRS imaging is a promising technique to provide chemical specificity as well as spatial and temporal information of gaseous species
  •  
2.
  • Amer, Eynas, et al. (author)
  • Stimulated Raman scattering holography for time-resolved imaging of methane gas
  • 2016
  • In: Applied Optics. - 1559-128X .- 2155-3165. ; 55:13, s. 3429-3434
  • Journal article (peer-reviewed)abstract
    • In this paper, pulsed digital holographic detection is coupled to the stimulated Raman scattering (SRS) process for imaging gases. A Q-switched Nd-YAG laser (532 nm) has been used to pump methane gas (CH4) at pressures up to 12 bars. The frequency-tripled (355 nm) beam from the same laser was used to pump an optical parametric oscillator (OPO). The Stokes beam (from the OPO) has been tuned to 629.93 nm so that the frequency difference between the pump (532 nm) and the Stokes beams fits a Raman active vibrational mode of the methane molecule (2922 cm(-1)). The pump beam has been spatially modulated with fringes produced in a Michelson interferometer. The pump and the Stokes beams were overlapped in time, space, and polarization on the gas molecules, resulting in a stimulated Raman gain of the Stokes beam and a corresponding loss of the pump beam through the SRS process. The resulting gain of the Stokes beam has been detected using pulsed digital holography by blending it with a reference beam on the detector. Two holograms of the Stokes beam, without and with the pump beam fringes present, were recorded. Intensity maps calculated from the recorded digital holograms showed amplification of the Stokes beam at the position of overlap with the pump beam fringes and the gas molecules. The gain of the Stokes beam has been separated from the background in the Fourier domain. A gain of about 4.5% at a pump beam average intensity of 4 MW/cm(2) and a Stokes beam intensity of 0.16 MW/cm(2) have been recorded at a gas pressure of 12 bars. The gain decreased linearly with decreasing gas pressure. The results show that SRS holography is a promising technique to pinpoint a specific species and record its spatial and temporal distribution
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2
Type of publication
journal article (2)
Type of content
peer-reviewed (2)
Author/Editor
Amer, Eynas (2)
Gren, Per (2)
Sjödahl, Mikael (2)
Edenharder, Stefan (2)
University
Luleå University of Technology (2)
Language
English (2)
Research subject (UKÄ/SCB)
Engineering and Technology (2)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view