SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Eder L) "

Search: WFRF:(Eder L)

  • Result 1-10 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Chase, A., et al. (author)
  • Profound parental bias associated with chromosome 14 acquired uniparental disomy indicates targeting of an imprinted locus
  • 2015
  • In: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 29:10, s. 2069-2074
  • Journal article (peer-reviewed)abstract
    • Acquired uniparental disomy (aUPD) is a common finding in myeloid malignancies and typically acts to convert a somatically acquired heterozygous mutation to homozygosity. We sought to identify the target of chromosome 14 aUPD (aUPD14), a recurrent abnormality in myeloid neoplasms and population cohorts of elderly individuals. We identified 29 cases with aUPD14q that defined a minimal affected region (MAR) of 11.2 Mb running from 14q32.12 to the telomere. Exome sequencing (n = 7) did not identify recurrently mutated genes, but methylation-specific PCR at the imprinted MEG3-DLK1 locus located within the MAR demonstrated loss of maternal chromosome 14 and gain of paternal chromosome 14 (P < 0.0001), with the degree of methylation imbalance correlating with the level of aUPD (r = 0.76; P = 0.0001). The absence of driver gene mutations in the exomes of three individuals with aUPD14q but no known haematological disorder suggests that aUPD14q may be sufficient to drive clonal haemopoiesis. Analysis of cases with both aUPD14q and JAK2 V617F (n = 11) indicated that aUPD14q may be an early event in some cases but a late event in others. We conclude that aUPD14q is a recurrent abnormality that targets an imprinted locus and may promote clonal haemopoiesis either as an initiating event or as a secondary change.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Martin, S, et al. (author)
  • Pre-validation of a reporter gene assay for oxidative stress for the rapid screening of nanobiomaterials
  • 2022
  • In: Frontiers in toxicology. - : Frontiers Media SA. - 2673-3080. ; 4, s. 974429-
  • Journal article (peer-reviewed)abstract
    • Engineered nanomaterials have been found to induce oxidative stress. Cellular oxidative stress, in turn, can result in the induction of antioxidant and detoxification enzymes which are controlled by the nuclear erythroid 2-related factor 2 (NRF2) transcription factor. Here, we present the results of a pre-validation study which was conducted within the frame of BIORIMA (“biomaterial risk management”) an EU-funded research and innovation project. For this we used an NRF2 specific chemically activated luciferase expression reporter gene assay derived from the human U2OS osteosarcoma cell line to screen for the induction of the NRF2 mediated gene expression following exposure to biomedically relevant nanobiomaterials. Specifically, we investigated Fe3O4-PEG-PLGA nanomaterials while Ag and TiO2 “benchmark” nanomaterials from the Joint Research Center were used as reference materials. The viability of the cells was determined by using the Alamar blue assay. We performed an interlaboratory study involving seven different laboratories to assess the applicability of the NRF2 reporter gene assay for the screening of nanobiomaterials. The latter work was preceded by online tutorials to ensure that the procedures were harmonized across the different participating laboratories. Fe3O4-PEG-PLGA nanomaterials were found to induce very limited NRF2 mediated gene expression, whereas exposure to Ag nanomaterials induced NRF2 mediated gene expression. TiO2 nanomaterials did not induce NRF2 mediated gene expression. The variability in the results obtained by the participating laboratories was small with mean intra-laboratory standard deviation of 0.16 and mean inter laboratory standard deviation of 0.28 across all NRF2 reporter gene assay results. We conclude that the NRF2 reporter gene assay is a suitable assay for the screening of nanobiomaterial-induced oxidative stress responses.
  •  
8.
  •  
9.
  • Baust, A., et al. (author)
  • Ultrastrong coupling in two-resonator circuit QED
  • 2016
  • In: Physical Review B. - 2469-9969 .- 2469-9950. ; 93:21, s. Art. no. 214501-
  • Journal article (peer-reviewed)abstract
    • We report on ultrastrong coupling between a superconducting flux qubit and a resonant mode of a system comprised of two superconducting coplanar stripline resonators coupled galvanically to the qubit. With a coupling strength as high as 17.5% of the mode frequency, exceeding that of previous circuit quantum electrodynamics experiments, we observe a pronounced Bloch-Siegert shift. The spectroscopic response of our multimode system reveals a clear breakdown of the Jaynes-Cummings approximation. In contrast to earlier experiments, the high coupling strength is achieved without making use of an additional inductance provided by a Josephson junction.
  •  
10.
  • Heinzel, Andreas, et al. (author)
  • Validation of Plasma Biomarker Candidates for the Prediction of eGFR Decline in Patients With Type 2 Diabetes
  • 2018
  • In: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 41:9, s. 1947-1954
  • Journal article (peer-reviewed)abstract
    • RESEARCH DESIGN AND METHODS: We studied participants in PROVALID (PROspective cohort study in patients with type 2 diabetes mellitus for VALIDation of biomarkers), a prospective multinational cohort study of patients with type 2 diabetes and a follow-up of more than 24 months (n = 2,560; baseline median eGFR, 84 mL/min/1.73 m2; urine albumin-to-creatinine ratio, 8.1 mg/g). The 17 biomarkers were measured at baseline in 481 samples using Luminex and ELISA. The prediction of eGFR decline was evaluated by linear mixed modeling.RESULTS: In univariable analyses, 9 of the 17 markers showed significant differences in median concentration between stable and fast-progressing patients. A linear mixed model for eGFR obtained by variable selection exhibited an adjusted R2 of 62%. A panel of 12 biomarkers was selected by the procedure and accounted for 34% of the total explained variability, of which 32% was due to 5 markers. The individual contribution of each biomarker to the prediction of eGFR decline on top of clinical predictors was generally low. When included into the model, baseline eGFR exhibited the largest explained variability of eGFR decline (R2 of 79%), and the contribution of each biomarker dropped below 1%.CONCLUSIONS: In this longitudinal study of patients with type 2 diabetes and maintained eGFR at baseline, 12 of the 17 candidate biomarkers were associated with eGFR decline, but their predictive power was low.OBJECTIVE: The decline of estimated glomerular filtration rate (eGFR) in patients with type 2 diabetes is variable, and early interventions would likely be cost-effective. We elucidated the contribution of 17 plasma biomarkers to the prediction of eGFR loss on top of clinical risk factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view