SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Eilers Gerriet) "

Search: WFRF:(Eilers Gerriet)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Eilers, Gerriet, et al. (author)
  • Ligand versus metal protonation of an iron hydrogenase active site mimic
  • 2007
  • In: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 13:25, s. 7075-7084
  • Journal article (peer-reviewed)abstract
    • The protonation behavior of the iron hydrogenase active-site mimic [Fe2(u-adt)(CO)4(PMe3)2] (1; adt=N-benzyl-azadithiolate) has been investigated by spectroscopic, electrochemical, and computational methods. The combination of an adt bridge and electron-donating phosphine ligands allows protonation of either the adt nitrogen to give [Fe2(μ-Hadt)(CO)4(PMe3)2]+ ([1H]+), the Fe-Fe bond to give [Fe2-(μ-adt)(μ-H)(CO)4(PMe3)2]+ ([1Hy]+), or both sites simultaneously to give [Fe2(μ-Hadt)(μ-H)(CO)4(PMe3)2]2+ ([1HHy]2+). Complex 1 and its protonation products have been characterized in acetonitrile solution by IR, 1H, and 31PNMR spectroscopy. The solution structures of all protonation states feature a basal/basal orientation of the phosphine ligands, which contrasts with the basal/apical structure of 1 in the solid state. Density functional calculations have been performed on all protonation states and a comparison between calculated and experimental spectra confirms the structural assignments. The ligand protonated complex [1H]+ (pKa =12) is the initial, metastable protonation product while the hydride [1Hy]+ (pKa=15) is the thermodynamically stable singly protonated form. Tautomerization of cation [1H]+ to [1Hy]+ does not occur spontaneously. However, it can be catalyzed by HCl (k=2.2M-1s-1), which results in the selective formation of cation [1Hy]+. The protonations of the two basic sites have strong mutual effects on their basicities such that the hydride (pKa=8) and the ammonium proton (pKa=5) of the doubly protonated cationic complex [1HHy]2+ are considerably more acidic than in the singly protonated analogues. The formation of dication [1HHy]2+ from cation [1H]+ is exceptionally slow with perchloric or trifluoromethanesulfonic acid (k= 0.15 M-1s-1), while the dication is formed substantially faster (k > 102 M-1 s-1) with hydrobromic acid. Electrochemically, 1 undergoes irreversible reduction at -2.2V versus ferrocene, and this potential shifts to -1.6, - 1.1, and -1.0 V for the cationic complexes [1H]+, [1Hy]+, and [1HHy]2+, respectively, upon protonation. The doubly protonated form [1HHy]2+ is reduced at less negative potential than all previously reported hydrogenase models, although catalytic proton reduction at this potential is characterized by slow turnover.
  •  
3.
  • Eilers, Gerriet, 1973- (author)
  • Molecular Approaches to Photochemical Solar Energy Conversion : Towards Synthetic Catalysts for Water Oxidation and Proton Reduction
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • A molecular system capable of photoinduced water splitting is an attractive approach to solar energy conversion. This thesis deals with the functional characterization of molecular building blocks for the three principal functions of such a molecular system: Photoinduced accumulative charge separation, catalytic water oxidation, and catalytic proton reduction. Systems combining a ruthenium-trisbipyridine photosensitizer with multi-electron donors in form of dinuclear ruthenium or manganese complexes were investigated in view of the rate constants of electron transfer and excited state quenching. The kinetics were studied in the different oxidation states of the donor unit by combination of electrochemistry and time resolved spectroscopy. The rapid excited state quenching by the multi-electron donors points to the importance of redox intermediates for efficient accumulative photooxidation of the terminal donor.The redox behavior of manganese complexes as mimics of the water oxidizing catalyst in the natural photosynthetic reaction center was studied by electrochemical and spectroscopic methods. For a dinuclear manganese complex ligand exchange reactions were studied in view of their importance for the accumulative oxidation of the complex and its reactivity towards water. With the binding of substrate water, multiple oxidation in a narrow potential range and concomitant deprotonation of the bound water it was demonstrated that the manganese complex is capable of mimicking multiple aspects of photosynthetic water oxidation.A dinuclear iron complex was investigated as biomimetic proton reduction catalyst. The complex structurally mimics the active site of the iron-only hydrogenase enzyme and was designed to hold a proton on the bridging ligand and a hydride on the iron centers. Thermodynamics and kinetics of the protonation reactions and the electrochemical behavior of the different protonation states were studied in view of their potential catalytic performance.
  •  
4.
  • Eilers, Gerriet, et al. (author)
  • The Radiocarbon Intracavity Optogalvanic Spectroscopy Setup at Uppsala
  • 2013
  • In: Radiocarbon. - : Cambridge University Press (CUP). - 0033-8222 .- 1945-5755. ; 55:3-4, s. 237-250
  • Journal article (peer-reviewed)abstract
    • Accelerator mass spectrometry (AMS) is by far the predominant technology deployed for radiocarbon tracer studies. Applications are widespread from archaeology to biological, environmental, and pharmaceutical sciences. In spite of its excellent performance, AMS is expensive and complicated to operate. Consequently, alternative detection techniques for 14C are of great interest, with the vision of a compact, user-friendly, and inexpensive analytical method. Here, we report on the use of intracavity optogalvanic spectroscopy (ICOGS) for measurements of the 14C/12C ratio. This new detection technique was developed by Murnick et al. (2008). In the infrared (IR) region, CO2 molecules have strong absorption coefficients. The IR-absorption lines are narrow in line width and shifted for different carbon isotopes. These properties can potentially be exploited to detect 14CO2, 13CO2, or 12CO2 molecules unambiguously. In ICOGS, the sample is in the form of CO2 gas, eliminating the graphitization step that h is required in most AMS labs. The status of the ICOGS setup in Uppsala is presented. The system is operational but not yet fully developed. Data are presented for initial results that illustrate the dependence of the optogalvanic signal on various parameters, such as background and plasma-induced changes in the sample gas composition.
  •  
5.
  •  
6.
  •  
7.
  • Persson, Anders, et al. (author)
  • Evaluation of Intracavity Optogalvanic Spectroscopy for Radiocarbon Measurements
  • 2013
  • In: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 85ASAP:14, s. 6790-6798
  • Journal article (peer-reviewed)abstract
    • Ever since the first publication of intracavity optogalvanic spectroscopy (ICOGS) in 2008, this novel technique for measuring the 14C/12C ratio in carbon dioxide has rendered considerable attention. As a result, there are currently at least five different research groups pursuing research on ICOGS. With a claimed limit of detection of 10–15 (14C/12C), i.e., in the same order as accelerator mass spectroscopy, achieved with a relatively inexpensive and uncomplicated table-top system, ICOGS has major scientific and commercial implications. However, during the past 5 years, no research group has been able to reproduce these results or present additional proof for ICOGS’s capability of unambiguous 14C detection, including the authors of the original publication. Starting in 2010, our group has set up a state-of-the-art ICOGS laboratory and has investigated the basic methodology of ICOGS in general and tried to reproduce the reported experiments in particular. We have not been able to reproduce the reported results concerning the optogalvanic signals dependence on14C concentration and wavelength and, ultimately, not seen any evidence of the capability of ICOGS to unambiguously detect 14C at all. Instead, we have found indications that the reported results can be products of measurement uncertainties and mistakes. Furthermore, our results strongly indicate that the reported limit of detection is likely to be overestimated by at least 2 orders of magnitude, based on the results presented in the original publication. Hence, we conclude that the original reports on ICOGS cannot be confirmed and therefore must be in error.
  •  
8.
  •  
9.
  • Schwartz, Lennart, et al. (author)
  • Iron hydrogenase active site mimic holding a proton and a hydride
  • 2006
  • In: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1359-7345 .- 1364-548X. ; 5, s. 520-522
  • Journal article (peer-reviewed)abstract
    • The first model of the iron hydrogenase active site has been prepared which concomitantly carries a proton and a hydride; the title species was characterized by IR and NMR spectroscopy and is reduced at more positive potential than any other mimic of this kind.
  •  
10.
  • Xu, Y. H., et al. (author)
  • Synthesis and characterization of dinuclear ruthenium complexes covalently linked to Ru-II tris-bipyridine : An approach to mimics of the donor side of photosystem II
  • 2005
  • In: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 11:24, s. 7305-7314
  • Journal article (peer-reviewed)abstract
    • To mimic the electron-donor side of photosystem II (PSII), three trinuclear ruthenium complexes (2, 2a, 2b) were synthesized. In these compl plexes, a mixed-valent dinuclear Ru-2(II,III) moiety with one phenoxy and two acetato bridges is covalently linked to a Ru-II tris-bipyridine photosensitizer. The properties and photoinduced electron/energy transfer of these complexes were studied. The results show that the Ru-2(II,III) moieties in the complexes readily undergo reversible one-electron reduction and one-electron oxidation to give the Ru-2(II,II) and Ru-2(II,III) states, respectively. This could allow for photooxidation of the sensitizer part with an external acceptor and subsequent electron transfer from the dinuclear ruthenium moiety to regenerate the sensitizer. However, all trinuclear ruthenium complexes have a very short excited-state lifetime, in the range of a few nanoseconds to less than 100 ps. Studies by femtosecond time-resolved techniques suggest that a mixture of intramolecular energy and electron transfer between the dinuclear ruthenium moiety and the excited [Ru(bpy)(3)](2+) photosensitizer is responsible for the short lifetimes. This problem is overcome by anchoring the complexes with ester- or carboxyl-substituted bipyridine ligands (2a, 2b) to nanocrystalline TiO2, and the desired electron transfer from the excited state of the [Ru(bPY)(3)](2+) moiety to the conduction band of TiO2, followed by intramolecular electron transfer from the dinuclear Ru-2(II,III) moiety to photogenerated Ru-III was observed. The resulting long-lived Ru-2(III,III) state decays on the millisecond timescale.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view