SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Elahi F. M.) "

Search: WFRF:(Elahi F. M.)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dornelas, M., et al. (author)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Journal article (peer-reviewed)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
2.
  • Volpe, Giovanni, 1979, et al. (author)
  • Roadmap for optical tweezers
  • 2023
  • In: Journal of Physics-Photonics. - : IOP Publishing. - 2515-7647. ; 5:2
  • Journal article (peer-reviewed)abstract
    • Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in the life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nano-particle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration.
  •  
3.
  • Sexton, C. E., et al. (author)
  • Alzheimer's disease research progress in Australia: The Alzheimer's Association International Conference Satellite Symposium in Sydney
  • 2022
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:1, s. 178-190
  • Journal article (peer-reviewed)abstract
    • The Alzheimer's Association International Conference held its sixth Satellite Symposium in Sydney, Australia in 2019, highlighting the leadership of Australian researchers in advancing the understanding of and treatment developments for Alzheimer's disease (AD) and other dementias. This leadership includes the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Ageing (AIBL), which has fueled the identification and development of many biomarkers and novel therapeutics. Two multimodal lifestyle intervention studies have been launched in Australia; and Australian researchers have played leadership roles in other global studies in diverse populations. Australian researchers have also played an instrumental role in efforts to understand mechanisms underlying vascular contributions to cognitive impairment and dementia; and through the Women's Healthy Aging Project have elucidated hormonal and other factors that contribute to the increased risk of AD in women. Alleviating the behavioral and psychological symptoms of dementia has also been a strong research and clinical focus in Australia.
  •  
4.
  • Bowler, D. E., et al. (author)
  • Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes
  • 2020
  • In: People and Nature. - : Wiley. - 2575-8314. ; 2:2, s. 380-394
  • Journal article (peer-reviewed)abstract
    • Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined. We compiled global gridded datasets on climate change, land-use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world. We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo-Pacific with high climate change and high fishing). We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers. Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world. Abstrakt Der Klimawandel und andere anthropogene Faktoren, die die biologische Vielfalt verandern, betreffen nicht alle Teile der Erde in gleicher Weise. Wahrend unsere Kenntnisse zu jedem einzelnen Gefahrdungsfaktor standig wachsen, ist unser Verstandnis zu den raumlichen Beziehungen zwischen den verschiedenen Faktoren und ihr Zusammenwirken noch sehr mangelhaft. Das betrifft z.B. auch die Unterschiede zwischen terrestrischen und marinen Lebensraumen, die sehr unterschiedlichen Bedrohungen ausgesetzt sein konnen, selbst wenn sie eng benachbart sind. In der vorliegenden Studie haben wir globale Datensatze uber Klimawandel, Landnutzung, Ressourcenausbeutung, Umweltverschmutzung, biologische Invasionen und Bevolkerungsdichte zusammengestellt. Mit Hilfe multivariater Statistiken haben wir die raumlichen Beziehungen zwischen diesen Ursachen des globalen Biodiversitatswandels und deren Kombinationen untersucht, um deren Einfluss auf verschiedene Regionen der Welt zu charakterisieren. Insbesondere in den terrestrischen Regionen wirken die genannten Gefahrdungsfaktoren haufig in der gleichen Richtung, vor allem solche, die zum Teil besonders hohe Belastungen darstellen. Regionen mit starker ausgepragtem Klimawandel sind tendenziell solche Gebiete, in denen die Gefahrdung durch andere Faktoren eher geringer ist, wie z.B. in der Tundra und im borealen Nadelwald, die stark vom Klimawandel, aber weniger von hoher Nutzungsintensitat und Verschmutzung betroffen sind. Dagegen treten in den Meeresregionen gegenteilige Muster auf, wo z.B. im Indopazifik ein sehr ausgepragter Klimawandel einer hoher Ressourcenausbeutung durch Fischerei zusammenfallt. Die Regionen der Welt lassen sich in Klassen unterschiedlicher Interaktionen und Intensitaten dieser anthropogenen Gefahrungsfaktoren unterteilen. Diese insgesamt 11 verschiedene Faktorenklassen konnen nun dazu verwendet werden, Auswirkungen auf Biodiversitat zu untersuchen und die Gefahrdungs-Hotspots zu identifizieren. Diese Hotspots sind diejenigen gro ss raumigen Meeres- und Festlandsregionen, in denen prioritar Naturschutzma ss nahmen angewendet werden mussen, um den Auswirkungen des anthropogenen Biodiversitatswandels entgegenzutreten. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
  •  
5.
  •  
6.
  • Casaletto, K. B., et al. (author)
  • A comparison of biofluid cytokine markers across platform technologies: Correspondence or divergence?
  • 2018
  • In: Cytokine. - : Elsevier BV. - 1043-4666. ; 111, s. 481-489
  • Journal article (peer-reviewed)abstract
    • Background: Quantification of biofluid cytokines is a rapidly growing area of translational research. However, comparability across the expanding number of available assay platforms for detection of the same proteins remains to be determined. We aimed to directly compare a panel of commonly measured cytokines in plasma of typically aging adults across two high sensitivity quantification platforms, Meso Scale Discovery high performance electrochemiluminiscence (HPE) and single-molecule immunosorbent assays (Simoa) by Quanterix. Methods: 57 community-dwelling older adults completed a blood draw, neuropsychological assessment, and brain MRI as part of a healthy brain aging study. Plasma samples from the same draw dates were analyzed for IL-10, IP-10, IL-6, TNF alpha, and IL-1 beta on HPE and Simoa, separately. Reliable detectability (coefficient of variance (CV) < 20% and outliers 3 interquartiles above the median removed), intra-assay precision, absolute concentrations, reproducibility across platforms, and concurrent associations with external variables of interest (e.g., demographics, peripheral markers of vascular health, and brain health) were examined. Results: The proportion of cytokines reliably measured on HPE (87.7-93.0%) and Simoa (75.4-93.0%) did not differ (ps > 0.32), with the exception of IL-1 beta which was only reliably measured using Simoa (68.4%). On average, CVs were acceptable at < 8% across both platforms. Absolute measured concentrations were higher using Simoa for IL-10, IL-6, and TNF alpha (ps < 0.05). HPE and Simoa shared only small-to-moderate proportions of variance with one another on the same cytokine proteins (range: r = 0.26 for IL-10 to r = 0.64 for IL-6), though platform agreement did not dependent on cytokine concentrations. Cytokine ratios within each platform demonstrated similar relative patterns of up- and down-regulation across HPE and Simoa, though still significantly differed (ps < 0.001). Supporting concurrent validity, all 95% confidence intervals of the correlations between cytokines and external variables overlapped between the two platforms. Moreover, most associations were in expected directions and consistently so across platforms (e.g., IL-6 and TNF alpha), though with several notable exceptions for IP-10 and IL-10. Conclusions: HPE and Simoa showed comparable detectability and intra-assay precision measuring a panel of commonly examined cytokine proteins, with the exception of IL-1 beta which was not reliably detected on HPE. However, Simoa demonstrated overall higher concentrations and the two platforms did not show agreement when directly compared against one another. Relative cytokine ratios and associations demonstrated similar patterns across platforms. Absolute cytokine concentrations may not be directly comparable across platforms, may be analyte dependent, and interpretation may be best limited to discussion of relative associations.
  •  
7.
  • Casaletto, K. B., et al. (author)
  • Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers
  • 2017
  • In: Neurology. - 0028-3878. ; 89:17, s. 1782-1788
  • Journal article (peer-reviewed)abstract
    • Objective: To determine the association between synaptic functioning as measured via neurogranin in CSF and cognition relative to established Alzheimer disease (AD) biomarkers in neurologically healthy older adults. Methods: We analyzed CSF concentrations of neurogranin, b-amyloid (Ab42), phosphorylated tau (p-tau), and total tau (t-tau) among 132 neurologically normal older adults (mean 64.5, range 55-85), along with bilateral hippocampal volumes and a measure of episodic memory (Auditory Verbal Learning Test, delayed recall). Univariable analyses examined the relationship between neurogranin and the other AD-related biomarkers. Multivariable regression models examined the relationship between neurogranin and delayed recall, adjusting for age and sex, and interaction terms (neurogranin 3 AD biomarkers). Results: Higher neurogranin concentrations were associated with older age (r 5 0.20, p 5 0.02), lower levels of p-tau and t-tau, and smaller hippocampal volumes (p>0.03), but not with CSF Ab42 (p 5 0.18). In addition, CSF neurogranin demonstrated a significant relationship with memory performance independent of the AD-related biomarkers; individuals with the lowest CSF neurogranin concentrations performed better on delayed recall than those with medium or high CSF neurogranin concentrations (p>0.01). Notably, CSF p-tau, t-tau, and Ab42 and hippocampal volumes were not significantly associated with delayed recall scores (p<0.40), and did not interact with neurogranin to predict memory (p<0.10). © 2017 The Author(s).
  •  
8.
  • Kalantarifard, F., et al. (author)
  • Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • Standard optical tweezers rely on optical forces arising when a focused laser beam interacts with a microscopic particle: scattering forces, pushing the particle along the beam direction, and gradient forces, attracting it towards the high-intensity focal spot. Importantly, the incoming laser beam is not affected by the particle position because the particle is outside the laser cavity. Here, we demonstrate that intracavity nonlinear feedback forces emerge when the particle is placed inside the optical cavity, resulting in orders-of-magnitude higher confinement along the three axes per unit laser intensity on the sample. This scheme allows trapping at very low numerical apertures and reduces the laser intensity to which the particle is exposed by two orders of magnitude compared to a standard 3D optical tweezers. These results are highly relevant for many applications requiring manipulation of samples that are subject to photodamage, such as in biophysics and nanosciences.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view