SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Elenius Klaus) "

Search: WFRF:(Elenius Klaus)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ihalainen, Saara, et al. (author)
  • Proteome analysis of cultivated vascular smooth muscle cells from a CADASIL patient
  • 2007
  • In: Molecular Medicine. - 1076-1551 .- 1528-3658. ; 13:5-6, s. 305-314
  • Journal article (peer-reviewed)abstract
    • Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a vascular dementing disease caused by mutations in NOTCH3 gene, a majority of which are missense mutations leading to an uneven number of cysteine residues in epidermal growth factor like repeats in the extracellular domain of Notch3 receptor (N3ECD). Disease is characterized by degeneration of vascular smooth muscle cells (VSMC) and accumulation of N3ECD on the VSMCs of small and middle-sized arteries. Recent studies have demonstrated that impairment of Notch3 signaling is not the primary cause of the disease. In the present study we have characterized the protein expression pattern of a unique material of genetically genuine cultured human CADASIL VSMCs by proteomic analysis. We identified 11 differentially expressed proteins, which are involved in protein degradation and folding, contraction of VSMCs and cellular stress. Based on the results the misfolding of Notch3 seems to cause endoplasmic reticulum stress and activation of unfolded protein response leading to increased reactive oxygen species and inhibition of cell proliferation. In addition, upregulation of contractile proteins suggests an alteration in the signalling system of VSMC contraction. The accumulation of the N3ECD on the cell surface possibly upregulates the angiotensin II regulatory feedback loop and thereby enhances the readiness of the cells to respond to angiotensin II stimulation.
  •  
2.
  • Iivanainen, Erika, et al. (author)
  • Intra- and extracellular signaling by endothelial neuregulin-1
  • 2007
  • In: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 313:13, s. 2896-2909
  • Journal article (peer-reviewed)abstract
    • Suppression of tumor growth by inhibition of ErbB receptor signaling is well documented. However, relatively little is known about the ErbB signaling system in the regulation of angiogenesis, a process necessary for tumor growth. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is expressed by vascular endothelial cells (EC) and promotes endothelial recruitment of vascular smooth muscle cells (SMC). To assess whether other members of the EGF-family regulate angiogenesis, the expression of 10 EGF-like growth factors in primary ECs and SMCs was analyzed. In addition to HB-EGF, neuregulin-1 (NRG-1) was expressed in ECs in vitro and in vivo. Endothelial NRG-1 was constitutively processed to soluble extracellular and intracellular signaling fragments, and its expression was induced by hypoxia. NRG-1 was angiogenic in vivo in mouse corneal pocket and chicken chorioallantoic membrane (CAM) assays. However, consistent with the lack of NRG-1 receptors in several primary EC lines, NRG-1 did not directly stimulate cellular responses in cultured ECs. In contrast, NRG-1 promoted EC responses in vitro and angiogenesis in CAM in vivo by mechanisms dependent on VEGF-A and VEGFR-2. These results indicate that NRG-1 is expressed by ECs and regulates angiogenesis by mechanisms involving paracrine up-regulation of VEGF-A.
  •  
3.
  • Nelimarkka, Lassi, et al. (author)
  • Expression of small extracellular chondroitin/dermatan sulfate proteoglycans is differentially regulated in human endothelial cells.
  • 1997
  • In: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 272:19, s. 12730-12737
  • Journal article (peer-reviewed)abstract
    • We have examined the expression of the small extracellular chondroitin/dermatan sulfate proteoglycans (CS/DS PGs), biglycan, decorin, and PG-100, which is the proteoglycan form of colony stimulating factor-1, in the human endothelial cell line EA.hy 926. We have also examined whether modulation of the phenotype of EA.hy 926 cells by tumor necrosis factor-alpha (TNF-alpha) is associated with specific changes in the synthesis of these PGs. We demonstrate that EA.hy 926 cells, when they form monolayer cultures typical of macrovascular endothelial cells, express and synthesize detectable amounts of biglycan and PG-100, but not decorin. On SDS-polyacrylamide gel electrophoresis both PGs behave like proteins of the relative molecular weight of approximately 250,000. TNF-alpha that changed the morphology of the cells from a polygonal shape into a spindle shape and that also stimulated the detachment of the cells from culture dish, markedly decreased the net synthesis of biglycan, whereas the net synthesis of PG-100 was increased. These changes were parallel with those observed at the mRNA level of the corresponding PGs. The proportions of the different sulfated CS/DS disaccharide units of PGs were not affected by TNF-alpha. Several other growth factors/cytokines, such as interferon-gamma, fibroblast growth factors-2 (FGF-2) and -7 (FGF-7), interleukin-1beta, and transforming growth factor-beta, unlike TNF-alpha, modulated neither the morphology nor the biglycan expression of EA.hy 926 cells under the conditions used in the experiments. However, PG-100 expression was increased also in response to FGF-2 and -7 and transforming growth factor-beta. None of the above cytokines, including TNF-alpha, was able to induce decorin expression in the cells. Our results indicate that the regulatory elements controlling the expression of the small extracellular CS/DS PGs in human endothelial cells are different.
  •  
4.
  •  
5.
  • Veikkolainen, Ville, et al. (author)
  • Erbb4 regulates the oocyte microenvironment during folliculogenesis.
  • 2020
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 29:17, s. 2813-2830
  • Journal article (peer-reviewed)abstract
    • Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders leading to infertility in women affecting reproductive, endocrine and metabolic systems. Recent genomewide association studies on PCOS cohorts revealed a single nucleotide polymorphism (SNP) in the ERBB4 receptor tyrosine kinase 4 gene, but its role in ovary development or during folliculogenesis remains poorly understood. Since no genetic animal models mimicking all PCOS reproductive features are available, we conditionally deleted Erbb4 in murine granulosa cells (GCs) under the control of Amh promoter. While we have demonstrated that Erbb4 deletion displayed aberrant ovarian function by affecting the reproductive function (asynchronous oestrous cycle leading to few ovulations and subfertility) and metabolic function (obesity), their ovaries also present severe structural and functional abnormalities (impaired oocyte development). Hormone analysis revealed an up-regulation of serum luteinizing hormone, hyperandrogenism, increased production of ovarian and circulating anti-Müllerian hormone. Our data implicate that Erbb4 deletion in GCs leads to defective intercellular junctions between the GCs and oocytes, causing changes in the expression of genes regulating the local microenvironment of the follicles. In vitro culture assays reducing the level of Erbb4 via shRNAs confirm that Erbb4 is essential for regulating Amh level. In conclusion, our results indicate a functional role for Erbb4 in the ovary, especially during folliculogenesis and its reduced expression plays an important role in reproductive pathophysiology, such as PCOS development.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view