SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elowsson Linda) "

Sökning: WFRF:(Elowsson Linda)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Rekabi, Zeinab, et al. (författare)
  • Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models
  • 2023
  • Ingår i: Royal Society Open Science. - : Royal Society Publishing. - 2054-5703. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures. 
  •  
2.
  • Bagher, Mariam, et al. (författare)
  • Crosstalk between mast cells and lung fibroblasts is modified by alveolar extracellular matrix and influences epithelial migration
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Mast cells play an important role in asthma, however, the interactions between mast cells, fibroblasts and epithelial cells in idiopathic pulmonary fibrosis (IPF) are less known. The objectives were to investigate the effect of mast cells on fibroblast activity and migration of epithelial cells. Lung fibroblasts from IPF patients and healthy individuals were co-cultured with LAD2 mast cells or stimulated with the proteases tryptase and chymase. Human lung fibroblasts and mast cells were cultured on cell culture plastic plates or decellularized human lung tissue (scaffolds) to create a more physiological milieu by providing an alveolar extracellular matrix. Released mediators were analyzed and evaluated for effects on epithelial cell migration. Tryptase increased vascular endothelial growth factor (VEGF) release from fibroblasts, whereas co-culture with mast cells increased IL-6 and hepatocyte growth factor (HGF). Culture in scaffolds increased the release of VEGF compared to culture on plastic. Migration of epithelial cells was reduced by IL-6, while HGF and conditioned media from scaffold cultures promoted migration. In conclusion, mast cells and tryptase increased fibroblast release of mediators that influenced epithelial migration. These data indicate a role of mast cells and tryptase in the interplay between fibroblasts, epithelial cells and the alveolar extracellular matrix in health and lung disease.
  •  
3.
  • Berillo, Dmitriy, et al. (författare)
  • Oxidized Dextran as Crosslinker for Chitosan Cryogel Scaffolds and Formation of Polyelectrolyte Complexes between Chitosan and Gelatin.
  • 2012
  • Ingår i: Macromolecular Bioscience. - : Wiley. - 1616-5195 .- 1616-5187. ; 12:8, s. 1090-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Macroporous scaffolds composed of chitosan and using oxidized dextran as a crosslinker are produced through cryogelation. Introducing gelatin as a third component into the structure results in the formation of mesopores in the pore walls, which are not seen if gelatin is excluded. The mesoporous structure is explained by the formation of polyelectrolyte complexes between chitosan and gelatin before crosslinking takes place. The scaffolds exhibit highly elastic properties withstanding compressions up to 60%. The in vitro biocompatibility of the cryogels is evaluated using fibroblasts from a mouse cell line (L929) and it is seen that the cells adhere and proliferate on the scaffolds. The mesoporous structure seems to have a positive effect on proliferation.
  •  
4.
  • Carmignac, Virginie, et al. (författare)
  • Autophagy is increased in laminin {alpha}2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A.
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:24, s. 4891-4902
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital muscular dystrophy caused by laminin α2 chain deficiency (also known as MDC1A) is a severe and incapacitating disease, characterized by massive muscle wasting. The ubiquitin-proteasome system plays a major role in muscle wasting and we recently demonstrated that increased proteasomal activity is a feature of MDC1A. The autophagy-lysosome pathway is the other major system involved in degradation of proteins and organelles within the muscle cell. However, it remains to be determined if the autophagy-lysosome pathway is dysregulated in muscular dystrophies, including MDC1A. Using the dy(3K)/dy(3K) mouse model of laminin α2 chain deficiency and MDC1A patient muscle, we show here that expression of autophagy-related genes is upregulated in laminin α2 chain-deficient muscle. Moreover, we found that autophagy inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. In particular, we show that systemic injection of 3-methyladenine (3-MA) reduces muscle fibrosis, atrophy, apoptosis and increases muscle regeneration and muscle mass. Importantly, lifespan and locomotive behavior were also greatly improved. These findings indicate that enhanced autophagic activity is pathogenic and that autophagy inhibition holds a promising therapeutic potential in the treatment of MDC1A.
  •  
5.
  • Elowsson, Linda, et al. (författare)
  • Evaluation of macroporous blood and plasma scaffolds for skeletal muscle tissue engineering
  • 2013
  • Ingår i: Biomaterials Science. - : Royal Society of Chemistry (RSC). - 2047-4830 .- 2047-4849. ; 1:4, s. 402-410
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of tissue engineering has a growing need for suitable scaffold materials to become attractive as a clinical therapy. To use a completely autologous construct to repair a damaged or diseased tissue is an appealing thought. As a model system, two types of scaffolds were prepared from biological fluids: blood and plasma. The prepared scaffolds formed a macroporous structure with elastic mechanical properties that were further evaluated with myoblast cell line (C2C12) cultivation and transplantation into mouse skeletal muscle. The cells were found to attach, proliferate, and migrate through all the different scaffolds. Moreover, the cells underwent myogenic differentiation, showing typical cell morphology aligned in a parallel fashion. An increased level of myogenin mRNA was found with the time of culture. Furthermore, myogenic markers MyoD1, desmin, myogenin and myosin, as well as beta-dystroglycan and the laminin alpha 2 chain, were found to be expressed. In vivo data indicated that the scaffolds degraded and were replaced with regenerated muscle fibres. We conclude that the two types of macroporous scaffolds based on blood or plasma have potential in the field of skeletal muscle tissue engineering.
  •  
6.
  • Elowsson, Linda, et al. (författare)
  • Porous protein-based scaffolds prepared through freezing as potential scaffolds for tissue engineering.
  • 2012
  • Ingår i: Journal of Materials Science: Materials in Medicine. - : Springer Science and Business Media LLC. - 1573-4838 .- 0957-4530. ; 23:10, s. 2489-2498
  • Tidskriftsartikel (refereegranskat)abstract
    • Successful tissue engineering with the aid of a polymer scaffold offers the possibility to produce a larger construct and to mould the shape after the defect. We investigated the use of cryogelation to form protein-based scaffolds through different types of formation mechanisms; enzymatic crosslinking, chemical crosslinking, and non-covalent interactions. Casein was found to best suited for enzymatic crosslinking, gelatin for chemical crosslinking, and ovalbumin for non-covalent interactions. Fibroblasts and myoblasts were used to evaluate the cryogels for tissue engineering purposes. The stability of the cryogels over time in culture differed depending on formation mechanism. Casein cryogels showed best potential to be used in skeletal tissue engineering, whereas gelatin cryogels would be more suitable for compliable soft tissues even though it also seemed to support a myogenic phenotype. Ovalbumin cryogels would be better suited for elastic tissues with faster regeneration properties due to its faster degradation time. Overall, the cryogelation technique offers a fast, cheap and reproducible way of creating porous scaffolds from proteins without the use of toxic compounds.
  •  
7.
  • Elowsson Rendin, Linda, et al. (författare)
  • Harnessing the ECM Microenvironment to Ameliorate Mesenchymal Stromal Cell-Based Therapy in Chronic Lung Diseases
  • 2021
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • It is known that the cell environment such as biomechanical properties and extracellular matrix (ECM) composition dictate cell behaviour including migration, proliferation, and differentiation. Important constituents of the microenvironment, including ECM molecules such as proteoglycans and glycosaminoglycans (GAGs), determine events in both embryogenesis and repair of the adult lung. Mesenchymal stromal/stem cells (MSC) have been shown to have immunomodulatory properties and may be potent actors regulating tissue remodelling and regenerative cell responses upon lung injury. Using MSC in cell-based therapy holds promise for treatment of chronic lung diseases such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, so far clinical trials with MSCs in COPD have not had a significant impact on disease amelioration nor on IPF, where low cell survival rate and pulmonary retention time are major hurdles to overcome. Research shows that the microenvironment has a profound impact on transplanted MSCs. In our studies on acellular lung tissue slices (lung scaffolds) from IPF patients versus healthy individuals, we see a profound effect on cellular activity, where healthy cells cultured in diseased lung scaffolds adapt and produce proteins further promoting a diseased environment, whereas cells on healthy scaffolds sustain a healthy proteomic profile. Therefore, modulating the environmental context for cell-based therapy may be a potent way to improve treatment using MSCs. In this review, we will describe the importance of the microenvironment for cell-based therapy in chronic lung diseases, how MSC-ECM interactions can affect therapeutic output and describe current progress in the field of cell-based therapy.
  •  
8.
  • Elowsson Rendin, Linda, et al. (författare)
  • Matrisome Properties of Scaffolds Direct Fibroblasts in Idiopathic Pulmonary Fibrosis
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 20:16
  • Tidskriftsartikel (refereegranskat)abstract
    • In idiopathic pulmonary fibrosis (IPF) structural properties of the extracellular matrix (ECM) are altered and influence cellular responses through cell-matrix interactions. Scaffolds (decellularized tissue) derived from subpleural healthy and IPF lungs were examined regarding biomechanical properties and ECM composition of proteins (the matrisome). Scaffolds were repopulated with healthy fibroblasts cultured under static stretch with heavy isotope amino acids (SILAC), to examine newly synthesized proteins over time. IPF scaffolds were characterized by increased tissue density, stiffness, ultimate force, and differential expressions of matrisome proteins compared to healthy scaffolds. Collagens, proteoglycans, and ECM glycoproteins were increased in IPF scaffolds, however while specific basement membrane (BM) proteins such as laminins and collagen IV were decreased, nidogen-2 was also increased. Findings were confirmed with histology, clearly showing a disorganized BM. Fibroblasts produced scaffold-specific proteins mimicking preexisting scaffold composition, where 11 out of 20 BM proteins were differentially expressed, along with increased periostin and proteoglycans production. We demonstrate how matrisome changes affect fibroblast activity using novel approaches to study temporal differences, where IPF scaffolds support a disorganized BM and upregulation of disease-associated proteins. These matrix-directed cellular responses emphasize the IPF matrisome and specifically the BM components as important factors for disease progression.
  •  
9.
  • Escarrer-Garau, Gabriel, et al. (författare)
  • In Vivo and In Vitro Pro-Fibrotic Response of Lung-Resident Mesenchymal Stem Cells from Patients with Idiopathic Pulmonary Fibrosis
  • 2024
  • Ingår i: Cells. - 2073-4409. ; 13:2, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung-resident mesenchymal stem cells (LR-MSC) are thought to participate in idiopathic pulmonary fibrosis (IPF) by differentiating into myofibroblasts. On the other hand, LR-MSC in IPF patients present senescence-related features. It is unclear how they respond to a profibrotic environment. Here, we investigated the profibrotic response of LR-MSC isolated from IPF and control (CON) patients. LR-MSC were inoculated in mice 48 h after bleomycin (BLM) instillation to analyze their contribution to lung damage. In vitro, LR-MSC were exposed to TGFβ. Mice inoculated with IPF LR-MSC exhibited worse maintenance of their body weight. The instillation of either IPF or CON LR-MSC sustained BLM-induced histological lung damage, bronchoalveolar lavage fluid cell count, and the expression of the myofibroblast marker, extracellular matrix (ECM) proteins, and proinflammatory cytokines in the lungs. In vitro, IPF LR-MSC displayed higher basal protein levels of aSMA and fibronectin than CON LR-MSC. However, the TGFβ response in the expression of TGFβ, aSMA, and ECM genes was attenuated in IPF LR-MSC. In conclusion, IPF LR-MSC have acquired myofibroblastic features, but their capacity to further respond to profibrotic stimuli seems to be attenuated. In an advanced stage of the disease, LR-MSC may participate in disease progression owing to their limited ability to repair epithelial damage.
  •  
10.
  • Falcones, Bryan, et al. (författare)
  • hLMSC Secretome Affects Macrophage Activity Differentially Depending on Lung-Mimetic Environments
  • 2022
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesenchymal stromal cell (MSC)-based therapies for inflammatory diseases rely mainly on the paracrine ability to modulate the activity of macrophages. Despite recent advances, there is scarce information regarding changes of the secretome content attributed to physiomimetic cultures and, especially, how secretome content influence on macrophage activity for therapy. hLMSCs from human donors were cultured on devices developed in house that enabled lung-mimetic strain. hLMSC secretome was analyzed for typical cytokines, chemokines and growth factors. RNA was analyzed for the gene expression of CTGF and CYR61. Human monocytes were differentiated to macrophages and assessed for their phagocytic capacity and for M1/M2 subtypes by the analysis of typical cell surface markers in the presence of hLMSC secretome. CTGF and CYR61 displayed a marked reduction when cultured in lung-derived hydrogels (L-Hydrogels). The secretome showed that lung-derived scaffolds had a distinct secretion while there was a large overlap between L-Hydrogel and the conventionally (2D) cultured samples. Additionally, secretome from L-Scaffold showed an HGF increase, while IL-6 and TNF-α decreased in lung-mimetic environments. Similarly, phagocytosis decreased in a lung-mimetic environment. L-Scaffold showed a decrease of M1 population while stretch upregulated M2b subpopulations. In summary, mechanical features of the lung ECM and stretch orchestrate anti-inflammatory and immunosuppressive outcomes of hLMSCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
tidskriftsartikel (22)
forskningsöversikt (2)
bokkapitel (2)
Typ av innehåll
refereegranskat (25)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Westergren-Thorsson, ... (17)
Elowsson, Linda (14)
Larsson-Callerfelt, ... (6)
Rosmark, Oskar (5)
Rendin, Linda Elowss ... (5)
Durbeej-Hjalt, Madel ... (4)
visa fler...
Kirsebom, Harald (4)
Müller, Catharina (4)
Löfdahl, Anna (4)
Rolandsson Enes, Sar ... (3)
Bjermer, Leif (3)
Hallgren, Oskar (3)
Mattiasson, Bo (3)
Dellgren, Göran (3)
Ibáñez-Fonseca, Artu ... (3)
Carmignac, Virginie (3)
Malmström, Anders (2)
Almendros, Isaac (2)
Näsman, Per, Docent, ... (2)
Malmström, Johan (2)
Tykesson, Emil (2)
Wigén, Jenny (2)
Deprest, Jan (2)
Wasserstrom, Sebasti ... (2)
Zhou, Xiao Hong (2)
Åhrman, Emma (2)
Kåredal, Monica (1)
Rissler, Jenny (1)
Isaksson, Hanna (1)
Eriksson, Leif (1)
Galaev, Igor (1)
Berillo, Dmitriy (1)
Al-Rekabi, Zeinab (1)
Dondi, Camilla (1)
Faruqui, Nilofar (1)
Siddiqui, Nazia S. (1)
Mudway, Ian (1)
Shaw, Michael (1)
Alajbegovic, Azra (1)
Stegmayr, John (1)
Berillo, Dmitry (1)
Holmberg, Johan K (1)
Piskin, Erhan (1)
Karlsson, Lisa (1)
Bagher, Mariam (1)
Nybom, Annika (1)
Burgess, Janette K (1)
Svensson, Martina (1)
Allamand, Valérie (1)
Körner, Zandra (1)
visa färre...
Lärosäte
Lunds universitet (25)
Kungliga Tekniska Högskolan (2)
Karolinska Institutet (2)
RISE (1)
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)
Teknik (5)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy