SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Engen Steinar) "

Search: WFRF:(Engen Steinar)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Engen, Steinar, et al. (author)
  • Effective size of fluctuating populations with two sexes and overlapping generations
  • 2007
  • In: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 61:8, s. 1873-1885
  • Journal article (peer-reviewed)abstract
    • We derive formulas that can be applied to estimate the effective population size N(e) for organisms with two sexes reproducing once a year and having constant adult mean vital rates independent of age. Temporal fluctuations in population size are generated by demographic and environmental stochasticity. For populations with even sex ratio at birth, no deterministic population growth and identical mean vital rates for both sexes, the key parameter determining N(e) is simply the mean value of the demographic variance for males and females considered separately. In this case Crow and Kimura's generalization of Wright's formula for N(e) with two sexes, in terms of the effective population sizes for each sex, is applicable even for fluctuating populations with different stochasticity in vital rates for males and females. If the mean vital rates are different for the sexes then a simple linear combination of the demographic variances determines N(e), further extending Wright's formula. For long-lived species an expression is derived for N(e) involving the generation times for both sexes. In the general case with nonzero population growth and uneven sex ratio of newborns, we use the model to investigate numerically the effects of different population parameters on N(e). We also estimate the ratio of effective to actual population size in six populations of house sparrows on islands off the coast of northern Norway. This ratio showed large interisland variation because of demographic differences among the populations. Finally, we calculate how N(e) in a growing house sparrow population will change over time.
  •  
2.
  • Jonsson, Bror, 1948-, et al. (author)
  • Asymmetric competition drives lake use of coexisting salmonids
  • 2008
  • In: Oecologia. - : Springer Science and Business Media LLC. - 0029-8549 .- 1432-1939. ; 157:4, s. 553-560
  • Journal article (peer-reviewed)abstract
    • To what degree are population differences in resource use caused by competition and the occupation of adjacent positions along environmental gradients evidence of competition? Habitat use may be the result of a competitive lottery, or restricted by competition. We tested to what extent population differences in habitat use of two salmonids, cutthroat trout (Oncorhynchus clarki) and Dolly Varden charr (Salvelinus malma) were influenced by interspecific competition. We hypothesized that the depth distribution of Dolly Varden charr would be affected by competition from the more littoral and surface-oriented cutthroat trout, and that the depth distribution of cutthroat trout would be little affected by competition from Dolly Varden charr. Sympatric populations of cutthroat trout and Dolly Varden charr were created by reciprocal transfers of previously allopatric populations in two experimental lakes. We found evidence of asymmetric competition, as Dolly Varden charr were displaced from littoral habitats when sympatric with cutthroat trout, whereas cutthroat trout remained unaffected by the presence of Dolly Varden charr. Evolved differences between the species, and differences between experimental lakes, also contributed to population differences in habitat use, but asymmetric competition remained as the main driver of different depth distributions in sympatry.
  •  
3.
  • Olsson, Fredrik, 1983- (author)
  • Inbreeding, Effective Population Sizes and Genetic Differentiation : A Mathematical Analysis of Structured Populations
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis consists of four papers on various aspects of inbreeding, effective population sizes and genetic differentiation in structured populations, that is, populations that consist of a number of subpopulations. Three of the papers concern age structured populations, where in the first paper we concentrate on calculating the variance effective population size (NeV) and how NeV depends on the time between measurements and the weighting scheme of age classes. In the third paper we develop an estimation procedure of NeV which uses age specific demographic parameters to obtain approximately unbiased estimates. A simulation method for age structured populations is presented in the fourth paper. It is applicable to models with multiallelic loci in linkage equilibrium.In the second paper, we develop a framework for analysis of effective population sizes and genetic differentiation in geographically subdivided populations with a general migration scheme. Predictions of gene identities and gene diversities of the population are presented, which are used to find expressions for effective population sizes (Ne) and the coefficient of gene differentiation (GST). We argue that not only the asymptotic values of Ne and GST are important, but also their temporal dynamic patterns.The models presented in this thesis are important for understanding how different age decomposition, migration and reproduction scenarios of a structured population affect quantities, such as various types of effective sizes and genetic differentiation between subpopulations.
  •  
4.
  • Saether, Bernt-Erik, et al. (author)
  • Demographic routes to variability and regulation in bird populations
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • There is large interspecific variation in the magnitude of population fluctuations, even among closely related species. The factors generating this variation are not well understood, primarily because of the challenges of separating the relative impact of variation in population size from fluctuations in the environment. Here, we show using demographic data from 13 bird populations that magnitudes of fluctuations in population size are mainly driven by stochastic fluctuations in the environment. Regulation towards an equilibrium population size occurs through density-dependent mortality. At small population sizes, population dynamics are primarily driven by environment-driven variation in recruitment, whereas close to the carrying capacity K, variation in population growth is more strongly influenced by density-dependent mortality of both juveniles and adults. Our results provide evidence for the hypothesis proposed by Lack that population fluctuations in birds arise from temporal variation in the difference between density-independent recruitment and density-dependent mortality during the non-breeding season.
  •  
5.
  • Saether, Bernt-Erik, et al. (author)
  • Density-Dependent Adaptive Topography in a Small Passerine Bird, the Collared Flycatcher
  • 2021
  • In: American Naturalist. - : University of Chicago Press. - 0003-0147 .- 1537-5323. ; 197:1, s. 93-110
  • Journal article (peer-reviewed)abstract
    • Adaptive topography is a central concept in evolutionary biology, describing how the mean fitness of a population changes with gene frequencies or mean phenotypes. We use expected population size as a quantity to be maximized by natural selection to show that selection on pairwise combinations of reproductive traits of collared flycatchers caused by fluctuations in population size generated an adaptive topography with distinct peaks often located at intermediate phenotypes. This occurred because r- and K-selection made phenotypes favored at small densities different from those with higher fitness at population sizes close to the carrying capacity K. Fitness decreased rapidly with a delay in the timing of egg laying, with a density-dependent effect especially occurring among early-laying females. The number of fledglings maximizing fitness was larger at small population sizes than when close to K. Finally, there was directional selection for large fledglings independent of population size. We suggest that these patterns can be explained by increased competition for some limiting resources or access to favorable nest sites at high population densities. Thus, r- and K-selection based on expected population size as an evolutionary maximization criterion may influence life-history evolution and constrain the selective responses to changes in the environment.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view