SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ensslin Torsten) "

Sökning: WFRF:(Ensslin Torsten)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boulanger, Francois, et al. (författare)
  • IMAGINE : a comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays
  • 2018
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :8
  • Tidskriftsartikel (refereegranskat)abstract
    • In this white paper we introduce the IMAGINE Consortium and its scientific background, goals and structure. The purpose of the consortium is to coordinate and facilitate the efforts of a diverse group of researchers in the broad areas of the interstellar medium, Galactic magnetic fields and cosmic rays, and our overarching goal is to develop more comprehensive insights into the structures and roles of interstellar magnetic fields and their interactions with cosmic rays within the context of Galactic astrophysics. The ongoing rapid development of observational and numerical facilities and techniques has resulted in a widely felt need to advance this subject to a qualitatively higher level of self-consistency, depth and rigour. This can only be achieved by the coordinated efforts of experts in diverse areas of astrophysics involved in observational, theoretical and numerical work. We present our view of the present status of this research area, identify its key unsolved problems and suggest a strategy that will underpin our work. The backbone of the consortium is the Interstellar MAGnetic field INference Engine, a publicly available Bayesian platform that employs robust statistical methods to explore the multi-dimensional likelihood space using any number of modular inputs. This tool will be used by the IMAGINE Consortium to develop an interpretation and modelling framework that provides the method, power and flexibility to interfuse information from a variety of observational, theoretical and numerical lines of evidence into a self-consistent and comprehensive picture of the thermal and non-thermal interstellar media. An important innovation is that a consistent understanding of the phenomena that are directly or indirectly influenced by the Galactic magnetic field, such as the deflection of ultra-high energy cosmic rays or extragalactic backgrounds, is made an integral part of the modelling. The IMAGINE Consortium, which is informal by nature and open to new participants, hereby presents a methodological framework for the modelling and understanding of Galactic magnetic fields that is available to all communities whose research relies on a state of the art solution to this problem.
  •  
2.
  •  
3.
  • Haverkorn, Marijke, et al. (författare)
  • IMAGINE : Modeling the Galactic Magnetic Field
  • 2019
  • Ingår i: Galaxies. - : MDPI AG. - 2075-4434. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IMAGINE Consortium aims to bring modeling of the magnetic field of the Milky Way to the next level by using Bayesian inference. IMAGINE includes an open-source modular software pipeline that optimizes parameters in a user-defined galactic magnetic field model against various selected observational datasets. Bayesian priors can be added as external probabilistic constraints of the model parameters. These conference proceedings describe the science goals of the IMAGINE consortium, the software pipeline and its inputs, namely observational data sets, galactic magnetic field models, and Bayesian priors.
  •  
4.
  • Hutschenreuter, Sebastian, et al. (författare)
  • The primordial magnetic field in our cosmic backyard
  • 2018
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 35:15
  • Tidskriftsartikel (refereegranskat)abstract
    • We reconstruct for the first time the three dimensional structure of magnetic fields on cosmological scales, which were seeded by density perturbations during the radiation dominated epoch of the Universe and later on were evolved by structure formation. To achieve this goal, we rely on three dimensional initial density fields inferred from the 2M++ galaxy compilation via the Bayesian BORG algorithm. Using those, we estimate the magnetogenesis by the so called Harrison mechanism. This effect produced magnetic fields exploiting the different photon drag on electrons and ions in vortical motions, which are exited due to second order perturbation effects in the Early Universe. Subsequently we study the evolution of these seed fields through the non- linear cosmic structure formation by virtue of a magneto-hydrodynamics simulation to obtain a 3D estimate for the structure of this primordial magnetic field component today. At recombination we obtain large scale magnetic field strengths around 10(-23) G, with a power spectrum peaking at about 2 Mpc(-1) h in comoving scales. At present we expect this evolved primordial field to have strengths above approximate to 10(-27) G and approximate to 10(-29) G in clusters of galaxies and voids, respectively. We also calculate the corresponding Faraday rotation measure map and show the magnetic field morphology and strength for specific objects of the Local Universe. These results provide a reliable lower limit on the primordial component of the magnetic fields in these structures.
  •  
5.
  • Porqueres, Natalia, et al. (författare)
  • Inferring high-redshift large-scale structure dynamics from the Lyman-alpha forest
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the major science goals over the coming decade is to test fundamental physics with probes of the cosmic large-scale structure out to high redshift. Here we present a fully Bayesian approach to infer the three-dimensional cosmic matter distribution and its dynamics at z > 2 from observations of the Lyman-alpha forest. We demonstrate that the method recovers the unbiased mass distribution and the correct matter power spectrum at all scales. Our method infers the three-dimensional density field from a set of one-dimensional spectra, interpolating the information between the lines of sight. We show that our algorithm provides unbiased mass profiles of clusters, becoming an alternative for estimating cluster masses complementary to weak lensing or X-ray observations. The algorithm employs a Hamiltonian Monte Carlo method to generate realizations of initial and evolved density fields and the three-dimensional large-scale flow, revealing the cosmic dynamics at high redshift. The method correctly handles multi-modal parameter distributions, which allow constraining the physics of the intergalactic medium with high accuracy. We performed several tests using realistic simulated quasar spectra to test and validate our method. Our results show that detailed and physically plausible inference of three-dimensional large-scale structures at high redshift has become feasible.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy