SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Etzelmuller B.) "

Search: WFRF:(Etzelmuller B.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Singh, B. P., et al. (author)
  • Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR
  • 2015
  • In: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 51:8
  • Journal article (peer-reviewed)abstract
    • Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion (pi N) TDAs from (p) over barp -> e(+)e(-)pi(0) reaction with the future PANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q(2), the amplitude of the signal channel (p) over barp -> e(+)e(-)pi(0) admits a QCD factorized description in terms of pi N TDAs and nucleon Distribution Amplitudes (DAs) in the forward aid backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring (p) over barp -> e(+)e(-)pi(0) with the PANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. (p) over barp -> pi(+)pi(-)pi(0) were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q(2) < 4.3 GeV2 and 5 < q(2) < 9 GeV2, respectively, with a neutral pion scattered in the forward or backward cone vertical bar cos theta(pi 0)vertical bar > 0.5 in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the PANDA detector will allow to achieve a background rejection factor of 5 . 10(7) (1 . 10(7)) at low (high) q(2) for s = 5 GeV2, and of 1 . 10(8) (6 . 10(6)) at low (high) q(2) for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with PANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing pi N TDAs.
  •  
2.
  • Collaboration, The PANDA, et al. (author)
  • Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
  • 2016
  • In: European Physical Journal A. - : Springer Publishing Company. - 1434-6001 .- 1434-601X. ; 52:10
  • Journal article (peer-reviewed)abstract
    • Simulation results for future measurements of electromagnetic proton form factors at P ¯ ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯ p→ e+e- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.p¯ p→ π+π-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.
  •  
3.
  • Renette, Cas, et al. (author)
  • Simulating the effect of subsurface drainage on the thermal regime and ground ice in blocky terrain in Norway
  • 2023
  • In: Earth Surface Dynamics. - : Copernicus GmbH. - 2196-6311 .- 2196-632X. ; 11:1, s. 33-50
  • Journal article (peer-reviewed)abstract
    • Ground temperatures in coarse, blocky deposits such as mountain blockfields and rock glaciers have long been observed to be lower in comparison with other (sub)surface material. One of the reasons for this negative temperature anomaly is the lower soil moisture content in blocky terrain, which decreases the duration of the zero curtain in autumn. Here we used the CryoGrid community model to simulate the effect of drainage on the ground thermal regime and ground ice in blocky terrain permafrost at two sites in Norway. The model set-up is based on a one-dimensional model domain and features a surface energy balance, heat conduction and advection, as well as a bucket water scheme with adjustable lateral drainage. We used three idealized subsurface stratigraphies, blocks only, blocks with sediment and sediment only, which can be either drained (i.e. with strong lateral subsurface drainage) or undrained (i.e. without drainage), resulting in six scenarios. The main difference between the three stratigraphies is their ability to retain water against drainage: while the blocks only stratigraphy can only hold small amounts of water, much more water is retained within the sediment phase of the two other stratigraphies, which critically modifies the freeze-thaw behaviour. The simulation results show markedly lower ground temperatures in the blocks only, drained scenario compared to other scenarios, with a negative thermal anomaly of up to 2.2 degrees C. For this scenario, the model can in particular simulate the time evolution of ground ice, with build-up during and after snowmelt and spring and gradual lowering of the ice table in the course of the summer season. The thermal anomaly increases with larger amounts of snowfall, showing that well-drained blocky deposits are less sensitive to insulation by snow than other soils. We simulate stable permafrost conditions at the location of a rock glacier in northern Norway with a mean annual ground surface temperature of 2.0-2.5 degrees C in the blocks only, drained simulations. Finally, transient simulations since 1951 at the rock glacier site (starting with permafrost conditions for all stratigraphies) showed a complete loss of perennial ground ice in the upper 5 m of the ground in the blocks with sediment, drained run; a 1.6 m lowering of the ground ice table in the sediment only, drained run; and only 0.1 m lowering in the blocks only, drained run. The interplay between the subsurface water-ice balance and ground freezing/thawing driven by heat conduction can at least partly explain the occurrence of permafrost in coarse blocky terrain below the elevational limit of permafrost in non-blocky sediments. It is thus important to consider the subsurface water-ice balance in blocky terrain in future efforts in permafrost distribution mapping in mountainous areas. Furthermore, an accurate prediction of the evolution of the ground ice table in a future climate can have implications for slope stability, as well as water resources in arid environments.
  •  
4.
  • Christiansen, H. H., et al. (author)
  • The Thermal State of Permafrost in the Nordic Area during the International Polar Year 2007-2009
  • 2010
  • In: Permafrost and Periglacial Processes. - : Wiley. - 1099-1530 .- 1045-6740. ; 21:2, s. 156-181
  • Journal article (peer-reviewed)abstract
    • This paper provides a snapshot of the permafrost thermal state in the Nordic area obtained during the International Polar Year (IPY) 2007-2009. Several intensive research campaigns were undertaken within a variety of projects in the Nordic countries to obtain this snapshot. We demonstrate for Scandinavia that both lowland permafrost in palsas and peat plateaus, and large areas of permafrost in the mountains are at temperatures close to 0 degrees C, which makes them sensitive to climatic changes. In Svalbard and northeast Greenland, and also in the highest parts of the mountains in the rest of the Nordic area, the permafrost is somewhat colder, but still only a few degrees below the freezing point. The observations presented from the network of boreholes, more than half of which were established during the IPY, provide an important baseline to assess how future predicted climatic changes may affect the permafrost thermal state in the Nordic area. Time series of active-layer thickness and permafrost temperature conditions in the Nordic area, which are generally only 10 years in length, show generally increasing active-layer depths and risings permafrost temperatures. Copyright (C) 2010 John Wiley & Sons, Ltd.
  •  
5.
  • Lundin, Lars-Christer, et al. (author)
  • System of information in NOPEX : retrieval, use, and query of climate data
  • 1999
  • In: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 98-99, s. 31-51
  • Journal article (peer-reviewed)abstract
    • The uncertainty in climate predictions caused by improper understanding of the role of the land-surface is underestimated and easy access to data from a series of landscape types around the globe would improve this. Such data exist from a series of large-scale land-surface experiments but access to them has been difficult. It is the objective of this paper to demonstrate how the System for Information in NOPEX (SINOP) could be set up to provide a combination of data archive and tool for executing various time-limited and long-term field activities. Setting up and running SINOP involved both technical and psychological issues. The major technical problems were associated with (i) the uninterrupted flow of large data volumes, (ii) data homogeneity, and (iii) the exploding technology development. The psychological and organisational problems were more difficult to tackle than the technical problems. Funding agencies assumed somebody else would take care of data archiving and documentation, academic organisations have difficulties to compete with the private market for database managers, many individual scientists were unwilling to deliver their datasets and, especially, unwilling to document them. It is suggested that changes in attitudes from scientists, academic organisations, and publishers are needed to give credit for the publication of good datasets and for the production of good documentation about them. CDs incorporating a subset of SINOP with well-documented datasets from NOPEX operations in 1994 and 1995 are published together with this NOPEX Special Issue. The CDs include climate variables, such as radiation, fluxes of heat, momentum, and water vapour, and various energy storage terms as well as hydrological variables from 13 sites within the central-Swedish NOPEX region, at the southern boundary of the boreal zone. The publication of these data is seen as a step towards giving data-set owners proper and citeable credit for their work.
  •  
6.
  • Lundin, L-C, et al. (author)
  • System of information in NOPEX - retrieval, use, and query of climate data
  • 1999
  • In: AGRICULTURAL AND FOREST METEOROLOGY. - : ELSEVIER SCIENCE BV. - 0168-1923. ; 98-9, s. 31-51
  • Journal article (peer-reviewed)abstract
    • The uncertainty in climate predictions caused by improper understanding of the role of the land-surface is underestimated and easy access to data from a series of landscape types around the globe would improve this. Such data exist from a series of large-
  •  
7.
  • Westermann, Sebastian, et al. (author)
  • The CryoGrid community model (version 1.0) - a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
  • 2023
  • In: Geoscientific Model Development. - 1991-959X .- 1991-9603. ; 16, s. 2607-2647
  • Journal article (peer-reviewed)abstract
    • The CryoGrid community model is a flexible toolbox for simulating the ground thermal regime and the ice-water balance for permafrost and glaciers, extending a well-established suite of permafrost models (CryoGrid 1, 2, and 3). The CryoGrid community model can accommodate a wide variety of application scenarios, which is achieved by fully modular structures through object-oriented programming. Different model components, characterized by their process representations and parameterizations, are realized as classes (i.e., objects) in CryoGrid. Standardized communication protocols between these classes ensure that they can be stacked vertically. For example, the CryoGrid community model features several classes with different complexity for the seasonal snow cover, which can be flexibly combined with a range of classes representing subsurface materials, each with their own set of process representations (e.g., soil with and without water balance, glacier ice). We present the CryoGrid architecture as well as the model physics and defining equations for the different model classes, focusing on one-dimensional model configurations which can also interact with external heat and water reservoirs. We illustrate the wide variety of simulation capabilities for a site on Svalbard, with point-scale permafrost simulations using, e.g., different soil freezing characteristics, drainage regimes, and snow representations, as well as simulations for glacier mass balance and a shallow water body. The CryoGrid community model is not intended as a static model framework but aims to provide developers with a flexible platform for efficient model development. In this study, we document both basic and advanced model functionalities to provide a baseline for the future development of novel cryosphere models.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view