SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fakhrai Reza) "

Search: WFRF:(Fakhrai Reza)

  • Result 1-10 of 39
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andrae, Johan, et al. (author)
  • High-pressure catalytic combustion of gasified biomass in a hybrid combustor
  • 2005
  • In: Applied Catalysis A. - : Elsevier BV. - 0926-860X .- 1873-3875. ; 293:1-2, s. 129-136
  • Journal article (peer-reviewed)abstract
    • Catalytic combustion of synthetic gasified biomass was conducted in a high-pressure facility at pressures ranging from 5 to 16 bars. The catalytic combustor design considered was a hybrid monolith (400 cpsi, diameter 3.5 cm, length 3.6 cm and every other channel coated). The active phase consisted of 1 wt.% Pt/gamma-Al2O3 With wash coat loading of total monolith 15 wt.%. In the interpretation of the experiments, a twodimensional boundary layer model was applied successfully to model a single channel of the monolith. At constant inlet velocity to the monolith the combustion efficiency decreased with increasing pressure. A multi-step surface mechanism predicted that the flux of carbon dioxide and water from the surface increased with pressure. However, as the pressure (i.e. the Reynolds number) was increased, unreacted gas near the center of the channel penetrated significantly longer into the channel compared to lower pressures. For the conditions studied (lambda = 46, T-in = 218-257 degrees C and residence time similar to 5 ms), conversion of hydrogen and carbon monoxide were diffusion limited after ignition, while methane never ignited and was kinetically controlled. According to the kinetic model surface coverage of major species changed from CO, H and CO2 before ignition to O, OH, CO2 and free surface sites after ignition. The model predicted further that for constant mass flow combustion efficiency increased with pressure, and was more pronounced at lower pressures (2.5-10 bar) than at higher pressures (> 10 bar).
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • D'Alessandro, Fabrizio, et al. (author)
  • Lean Catalytic Combustion for Ultra-low Emissions at High Temperature in Gas-Turbine Burners
  • 2011
  • In: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 25, s. 136-143
  • Journal article (peer-reviewed)abstract
    • Catalytic systems for methane combustion, with Rh and Pt in a BaZrO3-based perovskite, were synthesized at the University of L'Aquila and tested at close to industrial conditions at the KTH Energy Centre in Stockholm. Because of the resistance to high temperature of BaZrO3 (up to similar to 2600 degrees C), such systems are suitable for resolving stability problems frequently encountered with high-temperature operations. Furthermore, these perovskites contain the noble metal in a high oxidation state, giving rise to very active compounds. They also result in ultra-low emissions, compatible with legislation in such places as southern California and Japan.
  •  
6.
  • Dascomb, John, et al. (author)
  • Thermal conversion efficiency of producing hydrogen enriched syngas from biomass steam gasification
  • 2013
  • In: International journal of hydrogen energy. - : Elsevier BV. - 0360-3199 .- 1879-3487. ; 38:27, s. 11790-11798
  • Journal article (peer-reviewed)abstract
    • This paper presents the results from an experimental study on the energy conversion efficiency of producing hydrogen enriched syngas through uncatalyzed steam biomass gasification. Wood pellets were gasified using a 100 kWth fluidized bed gasifier at temperatures up to 850 degrees C. The syngas hydrogen concentration and cold gas efficiency were found to increase with both bed temperature and steam to biomass weight ratio, reaching a maximum of 51% and 124% respectively. The overall energy conversion to syngas (based on heating value) also increased with bed temperature but was inversely proportional to the steam to biomass ratio. The maximum energy conversion to syngas was found to be 68%. The conversion of energy to hydrogen (by heating value) increased with gasifier temperature and gas residence time, but was found to be independent of the S/B ratio. The maximum conversion of all energy sources to hydrogen was found to be 25%.
  •  
7.
  •  
8.
  •  
9.
  • Fakhrai, Reza, et al. (author)
  • Feasibility study and quality assurance of the end-product of Alphakat KDV technology for conversion of biomass
  • 2015
  • Reports (other academic/artistic)abstract
    • För närvarande finns det ett stort intresse att utveckla ett ekonomiskt och framkomligt system för omvandling av biomassa till flytande bränslen och kemikalier, då hanteringen av bränslen väsentligt underlättas.Under 2014, fick avdelningen för Energiteknik, KTH, uppdraget att undersöka och dokumentera KDVs process för konvertering av biomassa till flytande bränsle: Bland annat ingick att analysera processens produkt och restprodukter. Idag marknadsförs tekniken av Alphakat, Eppendorf, Tyskland. Alphakat gör gällande att KDV erbjuder en alternativ teknik för produktion av bränsle, inklusive syntetisk-diesel från fasta bränslen såsom biomassa. Det övergripande syftet med projektet var att samla information, tekniska data, processdata och genomföra test och analysera produkten. Detta för att få en uppfattning om huruvida KDV kan tekniskt användas föratt konvertera biomassa till diesel. Emellertid, KDVs tekniska potential, särskilt för omvandling av biomassa till flytande bränsle kunde inte bevisas baserat på resultaten av den nu aktuella undersökningen med den tillhandahållna informationen av företaget.Produkten av processen analyserades enligt ASTM D6715. De relevanta egenskaperna för KDVs produkt dokumenterades genom noggranna tester. Men huruvida produkten kommer från biomassa kunde inte garanteras då KDV är en oljebaserad process. Påverkan av så kallade “Carrier oil”, på produktens kvalitet och kvantitet kan vara betydande då en stor del av värmevärdet hos bränslet kan komma från denna olja. KDVs potential för produktion av flytande bränsle från biomassa kan inte bevisas.Vi bedömer att en fördjupad teknisk och vetenskaplig utvärdering av KDV är ett nödvändigt och viktigt steg för att framtiden underlätta kommande investeringar i KDVs teknologin. Denna utvärdering bör utföras i en laboratorieskala, med hjälp av avancerad mätutrustning, i en kontrollerad miljö som kunde garantera vetenskaplig dokumentation och övervakning av processen.Förvätskning av biomassa ser vi som lovande då faktorer som medger attförnybara bränslen och kemikalier då kan göras tillgängliga för en allmän användning då de har en stor miljömässig fördel.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view