SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ferrini Vicki) "

Search: WFRF:(Ferrini Vicki)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mayer, Larry, et al. (author)
  • The Nippon Foundation-GEBCO Seabed 2030 Project : The Quest to See the World's Oceans Completely Mapped by 2030
  • 2018
  • In: Geosciences. - : MDPI AG. - 2076-3263. ; 8:2
  • Journal article (peer-reviewed)abstract
    • Despite many of years of mapping effort, only a small fraction of the world ocean's seafloor has been sampled for depth, greatly limiting our ability to explore and understand critical ocean and seafloor processes. Recognizing this poor state of our knowledge of ocean depths and the critical role such knowledge plays in understanding and maintaining our planet, GEBCO and the Nippon Foundation have joined forces to establish the Nippon Foundation GEBCO Seabed 2030 Project, an international effort with the objective of facilitating the complete mapping of the world ocean by 2030. The Seabed 2030 Project will establish globally distributed regional data assembly and coordination centers (RDACCs) that will identify existing data from their assigned regions that are not currently in publicly available databases and seek to make these data available. They will develop protocols for data collection (including resolution goals) and common software and other tools to assemble and attribute appropriate metadata as they assimilate regional grids using standardized techniques. A Global Data Assembly and Coordination Center (GDACC) will integrate the regional grids into a global grid and distribute to users world-wide. The GDACC will also act as the central focal point for the coordination of common data standards and processing tools as well as the outreach coordinator for Seabed 2030 efforts. The GDACC and RDACCs will collaborate with existing data centers and bathymetric compilation efforts. Finally, the Nippon Foundation GEBCO Seabed 2030 Project will encourage and help coordinate and track new survey efforts and facilitate the development of new and innovative technologies that can increase the efficiency of seafloor mapping and thus make the ambitious goals of Seabed 2030 more likely to be achieved.
  •  
2.
  • Ware, Colin, et al. (author)
  • A global geographic grid system for visualizing bathymetry
  • 2020
  • In: Geoscientific Instrumentation, Methods and Data Systems. - : Copernicus GmbH. - 2193-0856 .- 2193-0864. ; 9:2, s. 375-384
  • Journal article (peer-reviewed)abstract
    • A global geographic grid system (Global GGS) is here introduced to support the display of gridded bathymetric data at whatever resolution is available in a visually seamless manner. The Global GGS combines a quadtree metagrid hierarchy with a system of compatible data grids. Metagrid nodes define the boundaries of data grids. Data grids are regular grids of depth values, coarse grids are used to represent sparse data and finer grids are used to represent high-resolution data. Both metagrids and data grids are defined in geographic coordinates to allow broad compatibility with the widest range of geospatial software packages. An important goal of the Global GGS is to support the meshing of adjacent tiles with different resolutions so as to create a seamless surface. This is accomplished by ensuring that abutting data grids either match exactly with respect to their grid-cell size or only differ by powers of 2. The oversampling of geographic data grids, which occurs towards the poles due to the convergence of meridians, is addressed by reducing the number of columns (longitude sampling) by powers of 2 at appropriate lines of latitude. In addition to the specification of the Global GGS, this paper describes a proof-of-concept implementation and some possible variants.
  •  
3.
  • Weatherall, Pauline, et al. (author)
  • A new digital bathymetric model of the world's oceans
  • 2015
  • In: Earth and Space Science. - 2333-5084. ; 2:8, s. 331-345
  • Journal article (peer-reviewed)abstract
    • General Bathymetric Chart of the Oceans (GEBCO) has released the GEBCO_2014 grid, a new digital bathymetric model of the world ocean floor merged with land topography from publicly available digital elevation models. GEBCO_2014 has a grid spacing of 30 arc sec and updates the 2010 release (GEBCO_08) by incorporating new versions of regional bathymetric compilations from the International Bathymetric Chart of the Arctic Ocean, the International Bathymetric Chart of the Southern Ocean, the Baltic Sea Bathymetry Database, and data from the European Marine Observation and Data network bathymetry portal, among other data sources. Approximately 33% of ocean grid cells (not area) have been updated in GEBCO_2014 from the previous version, including both new interpolated depth values and added soundings. These updates include large amounts of multibeam data collected using modern equipment and navigation techniques, improving portrayed details of the world ocean floor. Of all nonland grid cells in GEBCO_2014, approximately 18% are based on bathymetric control data, i.e., primarily multibeam and single-beam soundings or preprepared grids which may contain some interpolated values. The GEBCO_2014 grid has a mean and median depth of 3897 m and 3441 m, respectively. Hypsometric analysis reveals that 50% of the Earth's surface is composed of seafloor located 3200 m below mean sea level and that ~900 ship years of surveying would be needed to obtain complete multibeam coverage of the world's oceans.
  •  
4.
  • Wölfl, Anne-Cathrin, et al. (author)
  • Seafloor Mapping - The Challenge of a Truly Global Ocean Bathymetry
  • 2019
  • In: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Research review (peer-reviewed)abstract
    • Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world's oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 - conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view