SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Finazzi Giovanni) "

Search: WFRF:(Finazzi Giovanni)

  • Result 1-10 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Allorent, Guillaume, et al. (author)
  • A Dual Strategy to Cope with High Light in Chlamydomonas reinhardtii
  • 2013
  • In: The Plant Cell. - : Oxford University Press. - 1040-4651 .- 1532-298X. ; 25:2, s. 545-557
  • Journal article (peer-reviewed)abstract
    • Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition-deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II.
  •  
3.
  • Bailleul, Benjamin, et al. (author)
  • Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 524:7565, s. 366-9
  • Journal article (peer-reviewed)abstract
    • Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.
  •  
4.
  • Barbui, Tiziano, et al. (author)
  • Philadelphia-Negative Classical Myeloproliferative Neoplasms : Critical Concepts and Management Recommendations From European LeukemiaNet
  • 2011
  • In: Journal of Clinical Oncology. - 0732-183X .- 1527-7755. ; 29:6, s. 761-770
  • Journal article (peer-reviewed)abstract
    • We present a review of critical concepts and produce recommendations on the management of Philadelphia-negative classical myeloproliferative neoplasms, including monitoring, response definition, first-and second-line therapy, and therapy for special issues. Key questions were selected according the criterion of clinical relevance. Statements were produced using a Delphi process, and two consensus conferences involving a panel of 21 experts appointed by the European LeukemiaNet (ELN) were convened. Patients with polycythemia vera (PV) and essential thrombocythemia (ET) should be defined as high risk if age is greater than 60 years or there is a history of previous thrombosis. Risk stratification in primary myelofibrosis (PMF) should start with the International Prognostic Scoring System (IPSS) for newly diagnosed patients and dynamic IPSS for patients being seen during their disease course, with the addition of cytogenetics evaluation and transfusion status. High-risk patients with PV should be managed with phlebotomy, low-dose aspirin, and cytoreduction, with either hydroxyurea or interferon at any age. High-risk patients with ET should be managed with cytoreduction, using hydroxyurea at any age. Monitoring response in PV and ET should use the ELN clinicohematologic criteria. Corticosteroids, androgens, erythropoiesis-stimulating agents, and immunomodulators are recommended to treat anemia of PMF, whereas hydroxyurea is the first-line treatment of PMF-associated splenomegaly. Indications for splenectomy include symptomatic portal hypertension, drug-refractory painful splenomegaly, and frequent RBC transfusions. The risk of allogeneic stem-cell transplantation-related complications is justified in transplantation-eligible patients whose median survival time is expected to be less than 5 years.
  •  
5.
  •  
6.
  • Barosi, Giovanni, et al. (author)
  • Response criteria for essential thrombocythemia and polycythemia vera : result of a European LeukemiaNet consensus conference
  • 2009
  • In: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 113:20, s. 4829-4833
  • Journal article (peer-reviewed)abstract
    • European experts were convened to develop a definition of response to treatment in polycythemia vera (PV) and essential thrombocythemia (ET). Clinicohematologic (CH), molecular, and histologic response categories were selected. In ET, CH complete response (CR) was: platelet count less than or equal to 400 x 10(9)/L, no disease-related symptoms, normal spleen size, and white blood cell count less than or equal to 10 x 10(9)/L. Platelet count less than or equal to 600 x 10(9)/L or a decrease greater than 50% was partial response (PR). In PV, CH-CR was: hematocrit less than 45% without phlebotomy, platelet count less than or equal to 400 x 10(9)/L, white blood cell count less than or equal to 10 x 10(9)/L, and no disease-related symptoms. A hematocrit less than 45% without phlebotomy or response in 3 or more of the other criteria was defined as PR. In both ET and in PV, molecular CR was a reduction of any molecular abnormality to undetectable levels. Molecular PR was defined as a reduction more than or equal to 50% in patients with less than 50% mutant allele burden, or a reduction more than or equal to 25% in patients with more than 50% mutant allele burden. Bone marrow histologic response in ET was judged on megakaryocyte hyperplasia while on cellularity and reticulin fibrosis in PV. The combined use of these response definitions should help standardize the design and reporting of clinical studies.
  •  
7.
  • Bo, Davide Dal, et al. (author)
  • Consequences of Mixotrophy on Cell Energetic Metabolism in Microchloropsis gaditana Revealed by Genetic Engineering and Metabolic Approaches
  • 2021
  • In: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 12
  • Journal article (peer-reviewed)abstract
    • Algae belonging to the Microchloropsis genus are promising organisms for biotech purposes, being able to accumulate large amounts of lipid reserves. These organisms adapt to different trophic conditions, thriving in strict photoautotrophic conditions, as well as in the concomitant presence of light plus reduced external carbon as energy sources (mixotrophy). In this work, we investigated the mixotrophic responses of Microchloropsis gaditana (formerly Nannochloropsis gaditana). Using the Biolog growth test, in which cells are loaded into multiwell plates coated with different organic compounds, we could not find a suitable substrate for Microchloropsis mixotrophy. By contrast, addition of the Lysogeny broth (LB) to the inorganic growth medium had a benefit on growth, enhancing respiratory activity at the expense of photosynthetic performances. To further dissect the role of respiration in Microchloropsis mixotrophy, we focused on the mitochondrial alternative oxidase (AOX), a protein involved in energy management in other algae prospering in mixotrophy. Knocking-out the AOX1 gene by transcription activator-like effector nuclease (TALE-N) led to the loss of capacity to implement growth upon addition of LB supporting the hypothesis that the effect of this medium was related to a provision of reduced carbon. We conclude that mixotrophic growth in Microchloropsis is dominated by respiratory rather than by photosynthetic energetic metabolism and discuss the possible reasons for this behavior in relationship with fatty acid breakdown via β-oxidation in this oleaginous alga.
  •  
8.
  • Boudière, Laurence, et al. (author)
  • Glycerolipids in photosynthesis : composition, synthesis and trafficking.
  • 2014
  • In: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434 .- 0005-2728. ; 1837:4, s. 470-80
  • Journal article (peer-reviewed)abstract
    • Glycerolipids constituting the matrix of photosynthetic membranes, from cyanobacteria to chloroplasts of eukaryotic cells, comprise monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol and phosphatidylglycerol. This review covers our current knowledge on the structural and functional features of these lipids in various cellular models, from prokaryotes to eukaryotes. Their relative proportions in thylakoid membranes result from highly regulated and compartmentalized metabolic pathways, with a cooperation, in the case of eukaryotes, of non-plastidic compartments. This review also focuses on the role of each of these thylakoid glycerolipids in stabilizing protein complexes of the photosynthetic machinery, which might be one of the reasons for their fascinating conservation in the course of evolution. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
  •  
9.
  • Curien, Gilles, et al. (author)
  • The Water to Water Cycles in Microalgae.
  • 2016
  • In: Plant and Cell Physiology. - : Oxford University Press (OUP). - 0032-0781 .- 1471-9053. ; 57:7, s. 1354-1363
  • Journal article (peer-reviewed)abstract
    • In oxygenic photosynthesis, light produces ATP plus NADPH via linear electron transfer, i.e. the in-series activity of the two photosystems: PSI and PSII. This process, however, is thought not to be sufficient to provide enough ATP per NADPH for carbon assimilation in the Calvin-Benson-Bassham cycle. Thus, it is assumed that additional ATP can be generated by alternative electron pathways. These circuits produce an electrochemical proton gradient without NADPH synthesis, and, although they often represent a small proportion of the linear electron flow, they could have a huge importance in optimizing CO2 assimilation. In Viridiplantae, there is a consensus that alternative electron flow comprises cyclic electron flow around PSI and the water to water cycles. The latter processes include photosynthetic O2 reduction via the Mehler reaction at PSI, the plastoquinone terminal oxidase downstream of PSII, photorespiration (the oxygenase activity of Rubisco) and the export of reducing equivalents towards the mitochondrial oxidases, through the malate shuttle. In this review, we summarize current knowledge about the role of the water to water cycles in photosynthesis, with a special focus on their occurrence and physiological roles in microalgae.
  •  
10.
  • Finazzi, Giovanni, et al. (author)
  • Ions channels/transporters and chloroplast regulation.
  • 2015
  • In: Cell Calcium. - : Elsevier BV. - 0143-4160 .- 1532-1991. ; 58:1, s. 86-97
  • Journal article (peer-reviewed)abstract
    • Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view