SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Flemming Scott A.) "

Search: WFRF:(Flemming Scott A.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arndt, D. S., et al. (author)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Research review (peer-reviewed)
  •  
2.
  • Humphries, Grant R. W., et al. (author)
  • BRIDGING THE GAP FROM STUDENT TO SENIOR SCIENTIST : RECOMMENDATIONS FOR ENGAGING EARLY-CAREER SCIENTISTS IN PROFESSIONAL BIOLOGICAL SOCIETIES
  • 2016
  • In: Marine Ornithology. - : AFRICAN SEABIRD GROUP. - 1018-3337 .- 2074-1235. ; 44:2, s. 157-166
  • Journal article (peer-reviewed)abstract
    • Despite their long-standing and central role in the dissemination, promotion and defense of science. scientific societies currently face a unique combination of economic, social and technological changes. As a result, one of the most pressing challenges facing many societies is declining membership due to reduced recruitment and a failure to retain members, particularly early-career scientists (ECSs). To ensure that professional biological societies retain long-term viability and relevance, the recruitment and retention of ECSs needs to be a main priority. Here we propose a series of recommendations that we, a group of ECSs, believe will help professional societies better integrate and retain ECSs. We discuss each recommendation and detail its implementation using examples from our personal experiences in the global seabird research and management communities and from our collective experience as members of several professional societies. We believe these recommendations will not only help recruit and retain ECSs as society members, but will also directly benefit the organizations themselves.
  •  
3.
  • Lamarre, Jean François, et al. (author)
  • Timing of Breeding Site Availability Across the North-American Arctic Partly Determines Spring Migration Schedule in a Long-Distance Neotropical Migrant
  • 2021
  • In: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 9
  • Journal article (peer-reviewed)abstract
    • Long-distance migrants are under strong selection to arrive on their breeding grounds at a time that maximizes fitness. Many arctic birds start nesting shortly after snow recedes from their breeding sites and timing of snowmelt can vary substantially over the breeding range of widespread species. We tested the hypothesis that migration schedules of individuals co-occurring at the same non-breeding areas are adapted to average local environmental conditions encountered at their specific and distant Arctic breeding locations. We predicted that timing of breeding site availability (measured here as the average snow-free date) should explain individual variation in departure time from shared non-breeding areas. We tested our prediction by tracking American Golden-Plovers (Pluvialis dominica) nesting across the North-American Arctic. These plovers use a non-breeding (wintering) area in South America and share a spring stopover area in the nearctic temperate grasslands, located >1,800 km away from their nesting locations. As plovers co-occur at the same non-breeding areas but use breeding sites segregated by latitude and longitude, we could disentangle the potential confounding effects of migration distance and timing of breeding site availability on individual migration schedule. As predicted, departure date of individuals stopping-over in sympatry was positively related to the average snow-free date at their respective breeding location, which was also related to individual onset of incubation. Departure date from the shared stopover area was not explained by the distance between the stopover and the breeding location, nor by the stopover duration of individuals. This strongly suggests that plover migration schedule is adapted to and driven by the timing of breeding site availability per se. The proximate mechanism underlying the variable migration schedule of individuals is unknown and may result from genetic differences or individual learning. Temperatures are currently changing at different speeds across the Arctic and this likely generates substantial heterogeneity in the strength of selection pressure on migratory schedule of arctic birds migrating sympatrically.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view