SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fleps Ingmar) "

Search: WFRF:(Fleps Ingmar)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bahaloo, Hassan, 1983-, et al. (author)
  • On the failure initiation in the proximal human femur under simulated sideways fall
  • 2018
  • In: Annals of Biomedical Engineering. - : Springer. - 0090-6964 .- 1573-9686. ; 46, s. 270-283
  • Journal article (peer-reviewed)abstract
    • The limitations of areal bone mineral density measurements for identifying at-risk individuals have led to the development of alternative screening methods for hip fracture risk including the use of geometrical measurements from the proximal femur and subject specific finite element analysis (FEA) for predicting femoral strength, based on quantitative CT data (qCT). However, these methods need more development to gain widespread clinical applications. This study had three aims: To investigate whether proximal femur geometrical parameters correlate with obtained femur peak force during the impact testing; to examine whether or not failure of the proximal femur initiates in the cancellous (trabecular) bone; and finally, to examine whether or not surface fracture initiates in the places where holes perforate the cortex of the proximal femur. We found that cortical thickness around the trochanteric-fossa is significantly correlated to the peak force obtained from simulated sideways falling (R 2 = 0.69) more so than femoral neck cortical thickness (R 2 = 0.15). Dynamic macro level FE simulations predicted that fracture generally initiates in the cancellous bone compartments. Moreover, our micro level FEA results indicated that surface holes may be involved in primary failure events.
  •  
2.
  •  
3.
  •  
4.
  • Grassi, Lorenzo, et al. (author)
  • Validation of 3d finite element models from simulated Dxa images for Biofidelic simulations of sideways fall impact to the hip
  • 2020
  • In: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 142
  • Journal article (peer-reviewed)abstract
    • Computed tomography (CT)-derived finite element (FE) models have been proposed as a tool to improve the current clinical assessment of osteoporosis and personalized hip fracture risk by providing an accurate estimate of femoral strength. However, this solution has two main drawbacks, namely: (i) 3D CT images are needed, whereas 2D dual-energy x-ray absorptiometry (DXA) images are more generally available, and (ii) quasi-static femoral strength is predicted as a surrogate for fracture risk, instead of predicting whether a fall would result in a fracture or not. The aim of this study was to combine a biofidelic fall simulation technique, based on 3D computed tomography (CT) data with an algorithm that reconstructs 3D femoral shape and BMD distribution from a 2D DXA image. This approach was evaluated on 11 pelvis-femur constructs for which CT scans, ex vivo sideways fall impact experiments and CT-derived biofidelic FE models were available. Simulated DXA images were used to reconstruct the 3D shape and bone mineral density (BMD) distribution of the left femurs by registering a projection of a statistical shape and appearance model with a genetic optimization algorithm. The 2D-to-3D reconstructed femurs were meshed, and the resulting FE models inserted into a biofidelic FE modeling pipeline for simulating a sideways fall. The median 2D-to-3D reconstruction error was 1.02 mm for the shape and 0.06 g/cm3 for BMD for the 11 specimens. FE models derived from simulated DXAs predicted the outcome of the falls in terms of fracture versus non-fracture with the same accuracy as the CT-derived FE models. This study represents a milestone towards improved assessment of hip fracture risk based on widely available clinical DXA images.
  •  
5.
  • Lewin, Susanne, et al. (author)
  • Additively manufactured mesh-type titanium structures for cranial implants : E-PBF vs. L-PBF
  • 2021
  • In: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 197
  • Journal article (peer-reviewed)abstract
    • A patient-specific titanium-reinforced calcium phosphate (CaP–Ti) cranial implant has recently shown promising clinical results. Currently, its mesh-type titanium structure is additively manufactured using laser beam powder bed fusion (L-PBF). Nevertheless, an electron-beam (E-PBF) process could potentially be more time efficient. This study aimed to compare the geometrical accuracy and mechanical response of thin titanium structures manufactured by L-PBF (HIPed) and E-PBF (as-printed). Tensile test (ø = 1.2 mm) and implant specimens were manufactured. Measurements by μCT revealed a deviation in cross-sectional area as compared to the designed geometry: 13–35% for E-PBF and below 2% for L-PBF. A superior mechanical strength was obtained for the L-PBF specimens, both in the tensile test and the implant compression tests. The global peak load in the implant test was 457 ± 9 N and 846 ± 40 N for E-PBF and L-PBF, respectively. Numerical simulations demonstrated that geometrical deviation was the main factor in implant performance and enabled quantification of this effect: 34–39% reduction in initial peak force based on geometry, and only 11–16% reduction based on the material input. In summary, the study reveals an uncertainty in accuracy when structures of sizes relevant to mesh-type cranial implants are printed by the E-PBF method.
  •  
6.
  • Lewin, Susanne, et al. (author)
  • Implicit and explicit finite element models predict the mechanical response of calcium phosphate-titanium cranial implants
  • 2020
  • In: Journal of The Mechanical Behavior of Biomedical Materials. - : Elsevier. - 1751-6161 .- 1878-0180. ; 112
  • Journal article (peer-reviewed)abstract
    • The structural integrity of cranial implants is of great clinical importance, as they aim to provide cerebral protection after neurosurgery or trauma. With the increased use of patient-specific implants, the mechanical response of each implant cannot be characterized experimentally in a practical way. However, computational models provide an excellent possibility for efficiently predicting the mechanical response of patient-specific implants. This study developed finite element models (FEMs) of titanium-reinforced calcium phosphate (CaP-Ti) implants. The models were validated with previously obtained experimental data for two different CaP-Ti implant designs (D1 and D2), in which generically shaped implant specimens were loaded in compression at either quasi-static (1 mm/min) or impact (5 kg, 1.52 m/s) loading rates. The FEMs showed agreement with experimental data in the force-displacement response for both implant designs.The implicit FEMs predicted the peak load with an underestimation for D1 (9%) and an overestimation for D2 (11%). Furthermore, the shape of the force-displacement curves were well predicted. In the explicit FEMs, the first part of the force-displacement response showed 5% difference for D1 and 2% difference for D2, with respect to the experimentally derived peak loads. The explicit FEMs efficiently predicted the maximum dis-placements with 1% and 4% difference for D1 and D2, respectively. Compared to the CaP-Ti implant, an average parietal cranial bone FEM showed a stiffer response, greater energy absorption and less deformation under the same impact conditions.The framework developed for modelling the CaP-Ti implants has a potential for modelling CaP materials in other composite implants in future studies since it only used literature based input and matched boundary conditions. Furthermore, the developed FEMs make an important contribution to future evaluations of patient specific CaP-Ti cranial implant designs in various loading scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view