SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Flory Janine D) "

Search: WFRF:(Flory Janine D)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dean, Kelsey R., et al. (author)
  • Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder
  • 2020
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 25:12, s. 3337-3349
  • Journal article (peer-reviewed)abstract
    • Post-traumatic stress disorder (PTSD) impacts many veterans and active duty soldiers, but diagnosis can be problematic due to biases in self-disclosure of symptoms, stigma within military populations, and limitations identifying those at risk. Prior studies suggest that PTSD may be a systemic illness, affecting not just the brain, but the entire body. Therefore, disease signals likely span multiple biological domains, including genes, proteins, cells, tissues, and organism-level physiological changes. Identification of these signals could aid in diagnostics, treatment decision-making, and risk evaluation. In the search for PTSD diagnostic biomarkers, we ascertained over one million molecular, cellular, physiological, and clinical features from three cohorts of male veterans. In a discovery cohort of 83 warzone-related PTSD cases and 82 warzone-exposed controls, we identified a set of 343 candidate biomarkers. These candidate biomarkers were selected from an integrated approach using (1) data-driven methods, including Support Vector Machine with Recursive Feature Elimination and other standard or published methodologies, and (2) hypothesis-driven approaches, using previous genetic studies for polygenic risk, or other PTSD-related literature. After reassessment of ~30% of these participants, we refined this set of markers from 343 to 28, based on their performance and ability to track changes in phenotype over time. The final diagnostic panel of 28 features was validated in an independent cohort (26 cases, 26 controls) with good performance (AUC = 0.80, 81% accuracy, 85% sensitivity, and 77% specificity). The identification and validation of this diverse diagnostic panel represents a powerful and novel approach to improve accuracy and reduce bias in diagnosing combat-related PTSD.
  •  
2.
  • Blalock, Zachary N., et al. (author)
  • Circulating cell-free mitochondrial DNA levels and glucocorticoid sensitivity in a cohort of male veterans with and without combat-related PTSD
  • 2024
  • In: Translational Psychiatry. - 2158-3188. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Circulating cell-free mitochondrial DNA (ccf-mtDNA) is a biomarker of cellular injury or cellular stress and is a potential novel biomarker of psychological stress and of various brain, somatic, and psychiatric disorders. No studies have yet analyzed ccf-mtDNA levels in post-traumatic stress disorder (PTSD), despite evidence of mitochondrial dysfunction in this condition. In the current study, we compared plasma ccf-mtDNA levels in combat trauma-exposed male veterans with PTSD (n = 111) with those who did not develop PTSD (n = 121) and also investigated the relationship between ccf mt-DNA levels and glucocorticoid sensitivity. In unadjusted analyses, ccf-mtDNA levels did not differ significantly between the PTSD and non-PTSD groups (t = 1.312, p = 0.191, Cohen’s d = 0.172). In a sensitivity analysis excluding participants with diabetes and those using antidepressant medication and controlling for age, the PTSD group had lower ccf-mtDNA levels than did the non-PTSD group (F(1, 179) = 5.971, p = 0.016, partial η 2 = 0.033). Across the entire sample, ccf-mtDNA levels were negatively correlated with post-dexamethasone adrenocorticotropic hormone (ACTH) decline (r = −0.171, p = 0.020) and cortisol decline (r = −0.149, p = 0.034) (viz., greater ACTH and cortisol suppression was associated with lower ccf-mtDNA levels) both with and without controlling for age, antidepressant status and diabetes status. Ccf-mtDNA levels were also significantly positively associated with IC50-DEX (the concentration of dexamethasone at which 50% of lysozyme activity is inhibited), a measure of lymphocyte glucocorticoid sensitivity, after controlling for age, antidepressant status, and diabetes status (β = 0.142, p = 0.038), suggesting that increased lymphocyte glucocorticoid sensitivity is associated with lower ccf-mtDNA levels. Although no overall group differences were found in unadjusted analyses, excluding subjects with diabetes and those taking antidepressants, which may affect ccf-mtDNA levels, as well as controlling for age, revealed decreased ccf-mtDNA levels in PTSD. In both adjusted and unadjusted analyses, low ccf-mtDNA levels were associated with relatively increased glucocorticoid sensitivity, often reported in PTSD, suggesting a link between mitochondrial and glucocorticoid-related abnormalities in PTSD.
  •  
3.
  • Blessing, Esther M., et al. (author)
  • Biological predictors of insulin resistance associated with posttraumatic stress disorder in young military veterans
  • 2017
  • In: Psychoneuroendocrinology. - : Elsevier BV. - 0306-4530. ; 82, s. 91-97
  • Journal article (peer-reviewed)abstract
    • Posttraumatic stress disorder (PTSD) is associated with increased risk for Type 2 diabetes and cardiovascular disease (cardiometabolic disease), warranting research into targeted prevention strategies. In the present case–control study of 160 young (mean age 32.7 years) male military veterans, we aimed to assess whether PTSD status predicted increased markers of cardiometabolic risk in otherwise healthy individuals, and further, to explore biological pathways between PTSD and these increased markers of cardiometabolic risk. Toward these aims, we compared measures of cardiometabolic risk, namely insulin resistance (IR) (HOMA-IR), metabolic syndrome (MetS) and prediabetes, between 80 PTSD cases and 80 controls without PTSD. We then determined whether PTSD-associated increases in HOMA-IR were correlated with select biological variables from pathways previously hypothesized to link PTSD with cardiometabolic risk, including systemic inflammation (increased C-reactive protein, interleukin-6, and tumor necrosis factor α), sympathetic over-activity (increased resting heart rate), and neuroendocrine dysregulation (increased plasma cortisol or serum brain-derived neurotrophic factor (BDNF)). We found PTSD diagnosis was associated with substantially higher HOMA-IR (cases 4.3 ± 4.3 vs controls 2.4 ± 2.0; p < 0.001), and a higher frequency of MetS (cases 21.3% vs controls 2.5%; p < 0.001), but not prediabetes (cases 20.0% vs controls 18.8%; p > 0.05). Cases also had increased pro-inflammatory cytokines (p < 0.01), heart rate (p < 0.001), and BDNF (p < 0.001), which together predicted increased HOMA-IR (adjusted R2 = 0.68, p < 0.001). Results show PTSD diagnosis in young male military veterans without cardiometabolic disease is associated with increased IR, predicted by biological alterations previously hypothesized to link PTSD to increased cardiometabolic risk. Findings support further research into early, targeted prevention of cardiometabolic disease in individuals with PTSD.
  •  
4.
  • Lindqvist, Daniel, et al. (author)
  • Increased circulating blood cell counts in combat-related PTSD : Associations with inflammation and PTSD severity
  • 2017
  • In: Psychiatry Research. - : Elsevier BV. - 0165-1781. ; 258, s. 330-336
  • Journal article (peer-reviewed)abstract
    • Inflammation is reported in post-traumatic stress disorder (PTSD). Few studies have investigated circulating blood cells that may contribute to inflammation. We assessed circulating platelets, white blood cells (WBC) and red blood cells (RBC) in PTSD and assessed their relationship to inflammation and symptom severity. One-hundred and sixty-three male combat-exposed veterans (82 PTSD, 81 non-PTSD) had blood assessed for platelets, WBC, and RBC. Data were correlated with symptom severity and inflammation. All cell counts were significantly elevated in PTSD. There were small mediation effects of BMI and smoking on these relationships. After adjusting for these, the differences in WBC and RBC remained significant, while platelet count was at trend level. In all subjects, all of the cell counts correlated significantly with inflammation. Platelet count correlated with inflammation only in the PTSD subjects. Platelet count, but none of the other cell counts, was directly correlated with PTSD severity ratings in the PTSD group. Combat PTSD is associated with elevations in RBC, WBC, and platelets. Dysregulation of all three major lineages of hematopoietic cells in PTSD, as well as their significant correlation with inflammation, suggest clinical significance of these changes.
  •  
5.
  • Lindqvist, Daniel, et al. (author)
  • Increased pro-inflammatory milieu in combat related PTSD - A new cohort replication study
  • 2017
  • In: Brain Behavior and Immunity. - : Elsevier BV. - 1090-2139 .- 0889-1591. ; 59, s. 260-264
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Several lines of evidence indicate that increased inflammation is associated with Post-Traumatic Stress Disorder (PTSD). We have previously reported that peripheral inflammatory markers are significantly higher in combat-exposed veterans with than without PTSD. This study was designed to replicate these findings in a new study cohort using the same population and recruitment strategies.METHODS: Sixty-one male war veterans (31 PTSD and 30 control subjects) were included in this replication study. Levels of Interleukin-6, Tumor Necrosis Factor-alpha, Gamma interferon, and high-sensitivity C-reactive protein were quantified in blood samples. A standardized "total pro-inflammatory score" was calculated to limit the number of statistical comparisons. The Clinician Administered PTSD Scale (CAPS) rating scale was used to assess PTSD symptom severity.RESULTS: PTSD subjects had significantly higher total pro-inflammatory scores compared to non-PTSD subjects in unadjusted analysis (Cohen's d=0.75, p=0.005) as well as after adjusting for potentially confounding effects of age, BMI, smoking, and potentially interfering medications and somatic co-morbidities (p=0.023). There were no significant correlations between inflammatory markers and severity of symptoms within the PTSD group.CONCLUSIONS: We replicated, in a new sample, our previous finding of increased inflammatory markers in combat-exposed PTSD subjects compared to combat-exposed non-PTSD controls. These findings strongly add to the growing literature suggesting that immune activation may be an important aspect of PTSD pathophysiology, although not directly correlated with current PTSD symptom levels in the PTSD group.
  •  
6.
  • Lindqvist, Daniel, et al. (author)
  • Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress.
  • 2014
  • In: Brain Behavior and Immunity. - : Elsevier BV. - 1090-2139 .- 0889-1591. ; 42:Jun 12, s. 81-88
  • Journal article (peer-reviewed)abstract
    • Chronic inflammation may be involved in combat-related post-traumatic stress disorder (PTSD) and may help explain comorbid physical diseases. However, the extent to which combat exposure per se, depression, or early life trauma, all of which are associated with combat PTSD, may confound the relationship between PTSD and inflammation is unclear.
  •  
7.
  • Verhoeven, Josine E, et al. (author)
  • Epigenetic Age in Male Combat-Exposed War Veterans : Associations with Posttraumatic Stress Disorder Status
  • 2018
  • In: Molecular Neuropsychiatry. - : S. Karger AG. - 2296-9209. ; 4:2, s. 90-99
  • Journal article (peer-reviewed)abstract
    • DNA methylation patterns change with age and can be used to derive an estimate of "epigenetic age," an indicator of biological age. Several studies have shown associations of posttraumatic stress disorder (PTSD) with worse somatic health and early mortality, raising the possibility of accelerated biological aging. This study examined associations between estimated epigenetic age and various variables in 160 male combat-exposed war veterans with (n = 79) and without PTSD (n = 81). DNA methylation was assessed in leukocyte genomic DNA using the Illumina 450K DNA methylation arrays. Epigenetic age was estimated using Horvath's epigenetic clock algorithm and Δage (epigenetic age-chronological age) was calculated. In veterans with PTSD (Δage = 3.2), Δage was on average lower compared to those without PTSD (Δage = 5.0; p = 0.02; Cohen's d = 0.42). This between-group difference was not explained by race/ethnicity, lifestyle factors or childhood trauma. Antidepressant use, however, explained part of the association. In the PTSD positive group, telomerase activity was negatively related to Δage (β = -0.35; p = 0.007). In conclusion, veterans with PTSD had significantly lower epigenetic age profiles than those without PTSD. Further, current antidepressant use and higher telomerase activity were related to relatively less epigenetic aging in veterans with PTSD, speculative of a mechanistic pathway that might attenuate biological aging-related processes in the context of PTSD.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view