SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Forrester C.) "

Search: WFRF:(Forrester C.)

  • Result 1-10 of 28
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Justice, A. E., et al. (author)
  • Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
  •  
2.
  • Poyatos, R., et al. (author)
  • Global transpiration data from sap flow measurements: the SAPFLUXNET database
  • 2021
  • In: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:6, s. 2607-2649
  • Journal article (peer-reviewed)abstract
    • Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.
  •  
3.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
4.
  •  
5.
  • Zhang, X., et al. (author)
  • Human total, basal and activity energy expenditures are independent of ambient environmental temperature
  • 2022
  • In: iScience. - : Elsevier Inc.. - 2589-0042. ; 25:8
  • Journal article (peer-reviewed)abstract
    • Lower ambient temperature (Ta) requires greater energy expenditure to sustain body temperature. However, effects of Ta on human energetics may be buffered by environmental modification and behavioral compensation. We used the IAEA DLW database for adults in the USA (n = 3213) to determine the effect of Ta (−10 to +30°C) on TEE, basal (BEE) and activity energy expenditure (AEE) and physical activity level (PAL). There were no significant relationships (p > 0.05) between maximum, minimum and average Ta and TEE, BEE, AEE and PAL. After adjustment for fat-free mass, fat mass and age, statistically significant (p < 0.01) relationships between TEE, BEE and Ta emerged in females but the effect sizes were not biologically meaningful. Temperatures inside buildings are regulated at 18–25°C independent of latitude. Hence, adults in the US modify their environments to keep TEE constant across a wide range of external ambient temperatures.
  •  
6.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Collins, C. G., et al. (author)
  • Experimental warming differentially affects vegetative and reproductive phenology of tundra plants
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra. It is unclear whether climate driven phenological shifts of tundra plants are consistent across the plant growing season. Here the authors analyse data from a network of field warming experiments in Arctic and alpine tundra, finding that warming differentially affects the timing and duration of reproductive and vegetative phenology.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 28
Type of publication
journal article (28)
Type of content
peer-reviewed (27)
other academic/artistic (1)
Author/Editor
Franks, Paul W. (10)
Amin, N (8)
Gudnason, V (8)
Boerwinkle, E (8)
Snieder, H. (8)
Renström, Frida (8)
show more...
Peters, A (7)
van Duijn, CM (7)
Smith, AV (7)
Rotter, JI (7)
Froguel, P (7)
Lehtimaki, T. (7)
van Duijn, Cornelia ... (7)
de Faire, U (7)
Gieger, Christian (7)
Peters, Annette (7)
Strauch, Konstantin (7)
Froguel, Philippe (7)
Esko, T (7)
Rauramaa, R (7)
Zhao, W. (6)
Lind, Lars (6)
Raitakari, Olli T (6)
Psaty, BM (6)
Uitterlinden, AG (6)
Wong, TY (6)
Rudan, Igor (6)
Wareham, Nicholas J. (6)
Stancáková, Alena (6)
Kuusisto, Johanna (6)
Laakso, Markku (6)
Waldenberger, M. (6)
Ridker, Paul M. (6)
Chasman, Daniel I. (6)
Amin, Najaf (6)
Langenberg, Claudia (6)
Magnusson, Patrik K ... (6)
Pedersen, Nancy L (6)
Boehnke, Michael (6)
Scott, Robert A (6)
Samani, Nilesh J. (6)
Stancakova, A. (6)
Kuusisto, J. (6)
Laakso, M. (6)
Gieger, C (6)
Boehnke, M (6)
Luan, Jian'an (6)
Leander, Karin (6)
Metspalu, Andres (6)
Munroe, Patricia B. (6)
show less...
University
Karolinska Institutet (22)
Umeå University (15)
Lund University (14)
University of Gothenburg (11)
Uppsala University (7)
Högskolan Dalarna (3)
show more...
Kristianstad University College (1)
Stockholm University (1)
Linköping University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (28)
Research subject (UKÄ/SCB)
Medical and Health Sciences (21)
Natural sciences (6)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view