SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Forsblom E) "

Search: WFRF:(Forsblom E)

  • Result 1-10 of 40
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Jain, Ruchi, et al. (author)
  • Liver nucleotide biosynthesis is linked to protection from vascular complications in individuals with long-term type 1 diabetes
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Identification of biomarkers associated with protection from developing diabetic complications is a prerequisite for an effective prevention and treatment. The aim of the present study was to identify clinical and plasma metabolite markers associated with freedom from vascular complications in people with very long duration of type 1 diabetes (T1D). Individuals with T1D, who despite having longer than 30 years of diabetes duration never developed major macro- or microvascular complications (non-progressors; NP) were compared with those who developed vascular complications within 25 years from diabetes onset (rapid progressors; RP) in the Scandinavian PROLONG (n = 385) and DIALONG (n = 71) cohorts. The DIALONG study also included 75 healthy controls. Plasma metabolites were measured using gas and/or liquid chromatography coupled to mass spectrometry. Lower hepatic fatty liver indices were significant common feature characterized NPs in both studies. Higher insulin sensitivity and residual beta-cell function (C-peptide) were also associated with NPs in PROLONG. Protection from diabetic complications was associated with lower levels of the glycolytic metabolite pyruvate and APOCIII in PROLONG, and with lower levels of thiamine monophosphate and erythritol, a cofactor and intermediate product in the pentose phosphate pathway as well as higher phenylalanine, glycine and serine in DIALONG. Furthermore, T1D individuals showed elevated levels of picolinic acid as compared to the healthy individuals. The present findings suggest a potential beneficial shunting of glycolytic substrates towards the pentose phosphate and one carbon metabolism pathways to promote nucleotide biosynthesis in the liver. These processes might be linked to higher insulin sensitivity and lower liver fat content, and might represent a mechanism for protection from vascular complications in individuals with long-term T1D.
  •  
3.
  • van Zuydam, NR, et al. (author)
  • A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
  • 2018
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 67:7, s. 1414-1427
  • Journal article (peer-reviewed)abstract
    • Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 × 10−8) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.
  •  
4.
  •  
5.
  •  
6.
  • Tehranchi, Ramin, et al. (author)
  • Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromes
  • 2005
  • In: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 106:1, s. 247-253
  • Journal article (peer-reviewed)abstract
    • Early erythroblasts from patients with refractory anemia (RA) and RA with ringed sideroblasts (RARS) show constitutive mitochondrial release of cytochrome c. Moreover, mature erythroblasts in RARS, but not in RA, display aberrant accumulation of mitochondrial ferritin (MtF). We analyzed cytochrome c release, MtF expression, and gene expression during erythrold differentiation in bone marrow cells from myelodysplastic syndrome (MDS) patients and healthy controls. Whereas none or few cultured erythrold cells from healthy individuals and RA patients expressed MtF, those from RARS patients showed MtF expression at an early stage, when cells were CD34(+) and without morphologic signs of erythroid differentiation. The proportion of RARS erythroblasts that were MtF(+) increased further upon in vitro maturation. Moreover, a significant overexpression of mRNA encoding cytochrome c, and proapoptotic Bid and Bax, was seen in freshly isolated cells from MDS patients. Genes involved in erythroid differentiation were also dysregulated in MDS cells. Importantly, GATA-1 expression increased during normal erythroid maturation, but remained low in MDS cultures, indicating a block of erythroid maturation at the transcriptional level. In conclusion, aberrant MtF expression in RARS erythroblasts occurs at a very early stage of erythrold differentiation and is paralleled by an up-regulation of genes involved in this process.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view