SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Frisk Junmei Hu) "

Search: WFRF:(Frisk Junmei Hu)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Frisk, Junmei Hu, et al. (author)
  • Biochemical Characterizations of Human TMPK Mutations Identified in Patients with Severe Microcephaly : Single Amino Acid Substitutions Impair Dimerization and Abolish Their Catalytic Activity
  • 2021
  • In: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 6:49, s. 33943-33952
  • Journal article (peer-reviewed)abstract
    • Deoxythymidylate kinase (TMPK) is a key enzyme in the synthesis of deoxythymidine triphosphate (dTTP). Four TMPK variants (P81L, A99T, D128N, and a frameshift) have been identified in human patients who suffered from severe neurodegenerative diseases. However, the impact of these mutations on TMPK function has not been clarified. Here we show that in fibroblasts derived from a patient, the P81L and D128N mutations led to a complete loss of TMPK activity in mitochondria and extremely low and unstable TMPK activity in cytosol. Despite the lack of TMPK activity, the patient-derived fibroblasts apparently grew normal. To investigate the impact of the mutations on the enzyme function, the mutant TMPKs were expressed, purified, and characterized. The wild-type TMPK mainly exists as a dimer with high substrate binding affinity, that is, low Km value and high catalytic efficiency, that is, k(cat)/K-M. In contrast, all mutants were present as monomers with dramatically reduced substrate binding affinity and catalytic efficiencies. Based on the human TMPK structure, none of the mutated amino acids interacted directly with the substrates. By structural analysis, we could explain why the respective amino acid substitutions could drastically alter the enzyme structure and catalytic function. In conclusion, TMPK mutations identified in patients represent loss of function mutations but surprisingly the proliferation rate of the patient-derived fibroblasts was normal, suggesting the existence of an alternative and hitherto unknown compensatory TMPK-like enzyme for dTTP synthesis. Further studies of the TMPK enzymes will help to elucidate the role of TMPK in neuropathology.
  •  
2.
  • Frisk, Junmei Hu, et al. (author)
  • Differential expression of enzymes in thymidylate biosynthesis in zebrafish at different developmental stages : implications for dtymk mutation-caused neurodegenerative disorders
  • 2022
  • In: BMC Neuroscience. - : Springer Nature. - 1471-2202. ; 23:1
  • Journal article (peer-reviewed)abstract
    • BackgroundDeoxythymidine triphosphate (dTTP) is an essential building block of DNA, and defects in enzymes involved in dTTP synthesis cause neurodegenerative disorders. For instance, mutations in DTYMK, the gene coding for thymidylate kinase (TMPK), cause severe microcephaly in human. However, the mechanism behind this is not well-understood. Here we used the zebrafish model and studied (i) TMPK, an enzyme required for both the de novo and the salvage pathways of dTTP synthesis, and (ii) thymidine kinases (TK) of the salvage pathway in order to understand their role in neuropathology.ResultsOur findings reveal that maternal-stored dNTPs are only sufficient for 6 cell division cycles, and the levels of dNTPs are inversely correlated to cell cycle length during early embryogenesis. TMPK and TK activities are prominent in the cytosol of embryos, larvae and adult fish and brain contains the highest TMPK activity. During early development, TMPK activity increased gradually from 6 hpf and a profound increase was observed at 72 hpf, and TMPK activity reached its maximal level at 96 hpf, and remained at high level until 144 hpf. The expression of dtymk encoded Dtymk protein correlated to its mRNA expression and neuronal development but not to the TMPK activity detected. However, despite the high TMPK activity detected at later stages of development, the Dtymk protein was undetectable. Furthermore, the TMPK enzyme detected at later stages showed similar biochemical properties as the Dtymk enzyme but was not recognized by the Dtymk specific antibody.ConclusionsOur results suggest that active dNTP synthesis in early embryogenesis is vital and that Dtymk is essential for neurodevelopment, which is supported by a recent study of dtymk knockout zebrafish with neurological disorder and lethal outcomes. Furthermore, there is a novel TMPK-like enzyme expressed at later stages of development.
  •  
3.
  • Frisk, Junmei Hu, et al. (author)
  • Identification of a novel thymidylate kinase activity.
  • 2020
  • In: Nucleosides, Nucleotides & Nucleic Acids. - : Informa UK Limited. - 1525-7770 .- 1532-2335. ; 39:10-12, s. 1359-1368
  • Journal article (peer-reviewed)abstract
    • Thymidylate kinase (TMPK, EC2.7.4.9) is the enzyme that converts deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP) in the synthesis of dTTP, an essential building block of DNA. To date, there is only one gene (TYMK) known to encode TMPK in mammalian cells. In this study, we investigated the distribution of TMPK activity and protein in subcellular fractions by using activity measurements and by using a specific antibody against TYMK-encoded TMPK (canonical TMPK). TMPK activity was detected in all subcellular fractions, of which the mitochondrial outer membrane contained the highest activity. High levels of canonical TMPK protein were detected in the cytosolic fraction, whereas low levels were found in the nuclear and mitochondrial matrix fractions. Strikingly, despite the detection of high TMPK activity in the mitochondrial outer membrane, canonical TMPK protein was not detected in this fraction. These results suggest that the TMPK activity detected in the outer membrane fraction may originate from a novel dTMP kinase, distinct from the canonical TYMK.
  •  
4.
  • Frisk, Junmei Hu, et al. (author)
  • Structural and functional analysis of human thymidylate kinase isoforms
  • 2022
  • In: Nucleosides, Nucleotides & Nucleic Acids. - : Taylor & Francis. - 1525-7770 .- 1532-2335. ; 41:3, s. 321-332
  • Journal article (peer-reviewed)abstract
    • Thymidylate kinase (TMPK) phosphorylates deoxythymidine monophosphate (dTMP) and plays an important role in genome stability. Deficiency in TMPK activity due to genetic alterations of DTYMK, i.e., the gene coding for TMPK, causes severe microcephaly in humans. However, no defects were observed in other tissues, suggesting the existence of a compensatory enzyme for dTTP synthesis. In search for this compensatory enzyme we analyzed 6 isoforms of TMPK mRNA deposited in the GenBank. Of these, only isoform 1 has been characterized and represents the known human TMPK. Our results reveal that isoform 2, 3, 4 and 5 lack essential structural elements for substrate binding and, thus, they are considered as nonfunctional isoforms. Isoform 6, however, has intact catalytic centers, i.e., dTMP-binding, DRX motif, ATP-binding p-loop and lid region, which are the key structural elements of an active TMPK, suggesting that isoform 6 may function as TMPK. When isoform 6 was expressed and purified, it showed only minimal activity (<0.1%) as compared with isoform 1. A putative isoform 6 was detected in a cancer cell line, in addition to the dominant isoform 1. However, because of its low activity, isoform 6 is unlikely be able to compensate for the loss of TMPK activity caused by deletions and/or point mutations of the DTYMK gene. Thereby, future studies to identify and characterize the compensatory TMPK enzyme found in patients with DTYMK mutations may contribute to the understanding of dTTP synthesis and of the pathophysiological role of DTYMK mutations in neurodegenerative disorders.
  •  
5.
  • Hu Frisk, Junmei, et al. (author)
  • Heavy metal tolerance of Mesorhizobium delmotii thymidylate kinase
  • 2022
  • In: Nucleosides, Nucleotides & Nucleic Acids. - : Taylor & Francis. - 1525-7770 .- 1532-2335. ; 41:12, s. 1305-1317
  • Journal article (peer-reviewed)abstract
    • Metal ions play an important role in many metabolic processes in all living organisms. At low concentrations, heavy metals such as Fe2+, Cu2+ and Zn2+ are essential cofactors for many enzymes. However, at high concentrations they are toxic. Mesorhizobium species belong to the class α-proteobacteria and have high tolerance to soil acidity, salinity, temperature extremes, and metallicolous conditions. To identify factors responsible for this tolerance we have studied the effects of metal ions on Mesorhizobium delmotii thymidylate kinase (MdTMPK), an essential enzyme in the synthesis of dTTP, thus being vital for cell growth. We show that Mg2+ and Mn2+ are the divalent metal ions required for catalysis and that Mn2+ gives the highest catalytic efficiency. MdTMPK activity in the presence of Mg2+ was strongly inhibited by the co-presence of Zn2+, Ni2+ and Co2+. However, the addition of Cs+ caused >2-fold enhanced MdTMPK activity. For TMPK from Bacilus anthracis and humans, the effects of Mg2+ and Mn2+ were similar, whereas the effects of other divalent metal ions were different, and no stimulatory effect of Cs+ was observed. Together, our results demonstrate that MdTMPK and BaTMPK function well in the presence of high concentrations of heavy metal ions, introducing a potential contribution of these enzymes to the heavy metal tolerance of Mesorhizobium delmotii and Bacillus anthracis
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view