SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gérard Maxence) "

Sökning: WFRF:(Gérard Maxence)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gekière, Antoine, et al. (författare)
  • Poison or Potion : Effects of Sunflower Phenolamides on Bumble Bees and Their Gut Parasite
  • 2022
  • Ingår i: Biology. - : MDPI AG. - 2079-7737. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Specific floral resources may help bees to face environmental challenges such as parasite infection, as recently shown for sunflower pollen. Whereas this pollen diet is known to be unsuitable for the larval development of bumble bees, it has been shown to reduce the load of a trypanosomatid parasite (Crithidia bombi) in the bumble bee gut. Recent studies suggested it could be due to phenolamides, a group of compounds commonly found in flowering plants. We, therefore, decided to assess separately the impacts of sunflower pollen and its phenolamides on a bumble bee and its gut parasite. We fed Crithidia-infected and -uninfected microcolonies of Bombus terrestris either with a diet of willow pollen (control), a diet of sunflower pollen (natural diet) or a diet of willow pollen supplemented with sunflower phenolamides (supplemented diet). We measured several parameters at both microcolony (i.e., food collection, parasite load, brood development and stress responses) and individual (i.e., fat body content and phenotypic variation) levels. As expected, the natural diet had detrimental effects on bumble bees but surprisingly, we did not observe any reduction in parasite load, probably because of bee species-specific outcomes. The supplemented diet also induced detrimental effects but by contrast to our a priori hypothesis, it led to an increase in parasite load in infected microcolonies. We hypothesised that it could be due to physiological distress or gut microbiota alteration induced by phenolamide bioactivities. We further challenged the definition of medicinal effects and questioned the way to assess them in controlled conditions, underlining the necessity to clearly define the experimental framework in this research field.
  •  
2.
  • Gérard, Maxence, 1991-, et al. (författare)
  • Elevated developmental temperatures impact the size and allometry of morphological traits of the bumblebee Bombus terrestris
  • 2023
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 226:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of global warming on wild bee decline threatens the pollination services they provide. Exposure to temperatures above optimal during development is known to reduce adult body size but how it affects the development and scaling of body parts remains unclear. In bees, a reduction in body size and/or a reduction in body parts, such as the antennae, tongue and wings, and how they scale with body size (i.e. their allometry) could severely affect their fitness. To date, it remains unclear how temperature affects body size and the scaling of morphological traits in bees. To address this knowledge gap, we exposed both males and workers of Bombus terrestris to elevated temperature during development and assessed the effects on (i) the size of morphological traits and (ii) the allometry between these traits. Colonies were exposed to optimal (25°C) or stressful (33°C) temperatures. We then measured the body size, wing size, antenna and tongue length, as well as the allometry between these traits. We found that workers were smaller and the antennae of both castes were reduced at the higher temperature. However, tongue length and wing size were not affected by developmental temperature. The allometric scaling of the tongue was also affected by developmental temperature. Smaller body size and antennae could impair both individual and colony fitness, by affecting foraging efficiency and, consequently, colony development. Our results encourage further exploration of how the temperature-induced changes in morphology affect functional traits and pollination efficiency. 
  •  
3.
  • Gérard, Maxence, 1991-, et al. (författare)
  • Exposure to elevated temperature during development affects bumblebee foraging behavior
  • 2022
  • Ingår i: Behavioral Ecology. - : Oxford University Press (OUP). - 1045-2249 .- 1465-7279. ; 33:4, s. 816-824
  • Tidskriftsartikel (refereegranskat)abstract
    • Bee foraging behavior provides a pollination service that has both ecological and economic benefits. However, bee population decline could directly affect the efficiency of this interaction. Among the drivers of this decline, global warming has been implicated as an emerging threat but exactly how increasing temperatures affect bee foraging behavior remains unexplored. Here, we assessed how exposure to elevated temperatures during development affects the foraging behavior and morphology of workers from commercial and wild Bombus terrestris colonies. Workers reared at 33 °C had a higher visiting rate and shorter visiting time than those reared at 27°C. In addition, far fewer workers reared at 33 °C engaged in foraging activities and this is potentially related to the drastic reduction in the number of individuals produced in colonies exposed to 33 °C. The impact of elevated developmental temperature on wild colonies was even stronger as none of the workers from these colonies performed any foraging trips. We also found that rearing temperature affected wing size and shape. Our results provide the first evidence that colony temperature can have striking effects on bumblebee foraging behavior. Of particular importance is the drastic reduction in the number of workers performing foraging trips, and the total number of foraging trips made by workers reared in high temperatures. Further studies should explore if, ultimately, these observed effects of exposure to elevated temperature during development lead to a reduction in pollination efficiency.
  •  
4.
  • Gérard, Maxence, et al. (författare)
  • Impact of crop exposure and agricultural intensification on the phenotypic variation of bees
  • 2022
  • Ingår i: Agriculture, Ecosystems & Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 338
  • Tidskriftsartikel (refereegranskat)abstract
    • In a context of rapid global change, understanding how environmental stressors can impact phenotypic variation, and which phenotypic traits are predominantly affected can be particularly relevant. Indeed, potential phenotypic modifications could affect the functionality of traits from taxa that are in decline but that are keystone species in many ecosystems. In this study, we assessed the impact of environmental drivers and agricultural intensification on two crucial pollinator species: the honeybee (Apis mellifera) and the buff-tailed bumblebee (Bombus terrestris). Among eight countries representing four major European biogeographical regions [i.e., Boreal (Sweden and Estonia), Atlantic (Ireland and United Kingdom), Continental (Germany and Switzerland) and Mediterranean (Spain and Italy)] and two type of crops (i.e., apple orchards and oilseed rape) we assessed how landscape structure, latitude and pesticide management could impact their wing morphology. Two sampling sessions were conducted: the first one when the hives/nests were settled on the field (T0) and a second sampling session after the potential effect of agricultural intensification (T1). Using a dataset of more than 7238 wings, we measured the wing size, shape and asymmetry. We observed that, in several countries, a shift in most of the morphological traits occurred between T0 and T1. When focusing on the drivers of phenotypic variation in T1, the levels of significance for some potential drivers were sometimes high, while most of the variation remained unexplained. The latitude and, more rarely, grassland cover were found to partly explain the wing modifications. In light of these results, we conclude that phenotypic shifts can occur in a very short period, after encountering new field conditions. Further studies should be conducted to better understand which alternative drivers could explain morphological changes in the agro-ecosystem after crop exposition, as well as the potential consequences of these changes on foraging performance or pollination efficiency.
  •  
5.
  • Gérard, Maxence, et al. (författare)
  • Impact of landscape fragmentation and climate change on body size variation of bumblebees during the last century
  • 2021
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 44:2, s. 255-264
  • Tidskriftsartikel (refereegranskat)abstract
    • Body size is a key parameter of organism fitness. While the impact of climate change on body size has received increasing attention, the long-term consequences of landscape fragmentation are still poorly known. These two major global threats may potentially induce opposite trends: the decrease of body size in warmer environments (e.g. individuals developing faster) or the selection of larger individuals in fragmented habitats (e.g. large individuals more capable of reaching distant patches). We assessed the relationship between temperature and landscape fragmentation with mean body size during the last century, within four European regions (Austria, Belgium, England and above the Arctic circle in Scandinavia) and among queens of five bumblebee species. At the regional scale, we first analysed the variation over time of body size and the two hypothesised drivers, temperature and landscape fragmentation. Then, at the local landscape scale, we tested whether body size varied according to these drivers irrespective of the region. At the regional level, we observed a statistically clear increase of queen body size corresponding to an increase of landscape fragmentation (i.e. in Belgium and England). There was no increase of size when fragmentation did not increase (i.e. in Austria and above the Arctic Circle). Temperature also increased through time in all regions. At the local landscape scale, we found that all species were impacted by changes in both climate and landscape fragmentation but show different trends. The body size of the two largest species significantly increased at landscape level with higher fragmentation while body size of the two smallest species decreased with higher fragmentation. We highlight that, in a context of global changes, landscape fragmentation can also be a major driver of body size clines. Depending on the dispersal abilities of species, larger species could be positively selected for and overcome landscape fragmentation.
  •  
6.
  • Gerard, Maxence, et al. (författare)
  • Patterns of size variation in bees at a continental scale : does Bergmann's rule apply?
  • 2018
  • Ingår i: Oikos. - : Wiley-Blackwell. - 0030-1299 .- 1600-0706. ; 127:8, s. 1095-1103
  • Tidskriftsartikel (refereegranskat)abstract
    • Body size latitudinal clines have been widley explained by the Bergmann's rule in homeothermic vertebrates. However, there is no general consensus in poikilotherms organisms in particular in insects that represent the large majority of wildlife. Among them, bees are a highly diverse pollinators group with high economic and ecological value. Nevertheless, no comprehensive studies of species assemblages at a phylogenetically larger scale have been carried out even if they could identify the traits and the ecological conditions that generate different patterns of latitudinal size variation. We aimed to test Bergmann's rule for wild bees by assessing relationships between body size and latitude at continental and community levels. We tested our hypotheses for bees showing different life history traits (i.e. sociality and nesting behaviour). We used 142 008 distribution records of 615 bee species at 50 x 50 km (CGRS) grids across the West Palearctic. We then applied generalized least squares fitted linear model (GLS) to assess the relationship between latitude and mean body size of bees, taking into account spatial autocorrelation. For all bee species grouped, mean body size increased with higher latitudes, and so followed Bergmann's rule. However, considering bee genera separately, four genera were consistent with Bergmann's rule, while three showed a converse trend, and three showed no significant cline. All life history traits used here (i.e. solitary, social and parasitic behaviour; ground and stem nesting behaviour) displayed a Bergmann's cline. In general there is a main trend for larger bees in colder habitats, which is likely to be related to their thermoregulatory abilities and partial endothermy, even if a 'season length effect' (i.e. shorter foraging season) is a potential driver of the converse Bergmann's cline particularly in bumblebees.
  •  
7.
  • Gérard, Maxence, 1991-, et al. (författare)
  • Resilience of bumblebee foraging behavior despite colony size reduction
  • 2023
  • Ingår i: Frontiers in insect science. - : Frontiers Media SA. - 2673-8600. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Foraging behavior is driven by diverse factors, notably life history traits. Foraging strategies are particularly complex among eusocial species such as bumblebees, because they depend primarily on the needs of the colony, rather than on individual's needs. Colony size, i.e. the number of workers in a colony vary a lot among eusocial insects. While a large colony can be adaptive, several drivers can strongly decrease colony size, like pesticides or high temperatures. In this study, we used the bumblebee Bombus terrestris to assess if workers adapted their foraging behavior to such rapid decreases in colony size. We conducted the foraging experiments with two plant species commonly used by bumblebees: Borago officinalis and Echium plantagineum. Several foraging parameters were measured: foraging time, number of foraging trips, number of workers foraging, handling time and visiting rate. Despite a drastic reduction in colony size, nearly all the foraging behavior parameters were unaffected by the colony size reduction. Colonies that were subject to a large decrease in workers instead displayed high resilience and behavioral plasticity by quickly increasing the proportion of foragers. Ultimately, further research should assess if this consistency in foraging behavior also allows bumblebee colonies to maintain both the efficiency of the resources collection and pollination.
  •  
8.
  • Gérard, Maxence, et al. (författare)
  • Short-term exposure to heatwave-like temperatures affects learning and memory in bumblebees
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:14, s. 4251-4259
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming has been identified as a key driver of bee declines around the world. While it is clear that elevated temperatures during the spring and summer months—the principal activity period of many bee species—is a factor in this decline, exactly how temperature affects bee survival is unknown. In vertebrates, there is clear evidence that elevated ambient temperatures impair cognition but whether and how heat affects the cognitive abilities of invertebrates remains unclear. Cognitive skills in bees are essential for their survival as, to supply the hive with nutrition, workers must be able to learn and remember the location of the most rewarding floral resources. Here, we investigate whether temperature-related cognitive impairments could be a driver of bee declines by exploring the effect of short-term increases in ambient temperature on learning and memory. We found that, in comparison to bees that were tested at 25°C (a temperature that they would typically experience in summer), bees that were exposed to 32°C (a temperature that they will becoming increasingly exposed to during heatwave events) were significantly worse at forming an association between a coloured light and a sucrose reward and that their capacity to remember this association after just 1 h was abolished. This study provides novel experimental evidence that even just a few hours of exposure to heatwave-like temperatures can severely impair the cognitive performance of insects. Such temperature-induced cognitive deficits could play an important role in explaining recent and future bee population declines.
  •  
9.
  • Ghisbain, Guillaume, et al. (författare)
  • A worthy conservation target? Revising the status of the rarest bumblebee of Europe
  • 2021
  • Ingår i: Insect Conservation and Diversity. - : Wiley. - 1752-458X .- 1752-4598. ; 14:5, s. 661-674
  • Tidskriftsartikel (refereegranskat)abstract
    • Against the context of global wildlife declines, targeted mitigation strategies have become critical to preserve what remains of biodiversity. However, the effective development of conservation tools in order to counteract these changes relies on unambiguous taxonomic determination and delineation.In this study, we focus on an endemic bumblebee species recorded only from the highest altitudes of the Sierra Nevada (Spain), Bombus reinigiellus (Rasmont, 1983). The species has the smallest range of any European bumblebee, along with a restricted diet and an inability to disperse because of its isolated montane distribution, making it an appropriate conservation target. However, through an integrative taxonomic approach including genetics, morphometrics and semio-chemistry, we demonstrate the conspecificity of this taxon with one of the most common and widespread bumblebee species of Europe, Bombus hortorum (L. 1761). We assign a subspecies status to this endemic taxon (Bombus hortorum reinigiellus comb. nov.) shown to be different in colour and morphology but also in wing shape and relative wing size compared to the other conspecific subspecies.Following our taxonomic revision, we reassessed the IUCN conservation status of Bombus hortorum both at the continental and Spanish scale. We then propose how historic climatic oscillations of the last Ice age could explain such a phenotypic divergence in a post-glacial refugium and highlight the critical role of establishing unambiguous taxonomic revision prior to any conservation assessment.
  •  
10.
  • Ghisbain, Guillaume, et al. (författare)
  • Expanding insect pollinators in the Anthropocene
  • 2021
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 96:6, s. 2755-2770
  • Tidskriftsartikel (refereegranskat)abstract
    • Global changes are severely affecting pollinator insect communities worldwide, resulting in repeated patterns of species extirpations and extinctions. Whilst negative population trends within this functional group have understandably received much attention in recent decades, another facet of global changes has been overshadowed: species undergoing expansion. Here, we review the factors and traits that have allowed a fraction of the pollinating entomofauna to take advantage of global environmental change. Sufficient mobility, high resistance to acute heat stress, and inherent adaptation to warmer climates appear to be key traits that allow pollinators to persist and even expand in the face of climate change. An overall flexibility in dietary and nesting requirements is common in expanding species, although niche specialization can also drive expansion under specific contexts. The numerous consequences of wild and domesticated pollinator expansions, including competition for resources, pathogen spread, and hybridization with native wildlife, are also discussed. Overall, we show that the traits and factors involved in the success stories of expanding pollinators are mostly species specific and context dependent, rendering generalizations of 'winning traits' complicated. This work illustrates the increasing need to consider expansion and its numerous consequences as significant facets of global changes and encourages efforts to monitor the impacts of expanding insect pollinators, particularly exotic species, on natural ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy