SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Güner Tuncay H.) "

Search: WFRF:(Güner Tuncay H.)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Denk, Thomas, et al. (author)
  • Cenozoic migration of a desert plant lineage across the North Atlantic
  • 2023
  • In: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 238:6, s. 2668-2684
  • Journal article (peer-reviewed)abstract
    • Previous paleobotanical work concluded that Paleogene elements of the sclerophyllous subhumid vegetation of western Eurasia and western North America were endemic to these disjunct regions, suggesting that the southern areas of the Holarctic flora were isolated at that time. Consequently, molecular studies invoked either parallel adaptation to dry climates from related ancestors, or long-distance dispersal in explaining disjunctions between the two regions, dismissing the contemporaneous migration of dry-adapted lineages via land bridges as unlikely.We report Vauquelinia (Rosaceae), currently endemic to western North America, in Cenozoic strata of western Eurasia. Revision of North American fossils previously assigned to Vauquelinia confirmed a single fossil-species of Vauquelinia and one of its close relative Kageneckia.We established taxonomic relationships of fossil-taxa using diagnostic character combinations shared with modern species and constructed a time-calibrated phylogeny.The fossil record suggests that Vauquelinia, currently endemic to arid and subdesert environments, originated under seasonally arid climates in the Eocene of western North America and subsequently crossed the Paleogene North Atlantic land bridge (NALB) to Europe. This pattern is replicated by other sclerophyllous, dry-adapted and warmth-loving plants, suggesting that several of these taxa potentially crossed the North Atlantic via the NALB during Eocene times.
  •  
2.
  • Adroit, Benjamin, et al. (author)
  • Patterns of insect damage types reflect complex environmental signal in Miocene forest biomes of Central Europe and the Mediterranean
  • 2021
  • In: Global and Planetary Change. - Amsterdam : Elsevier. - 0921-8181 .- 1872-6364. ; 199
  • Journal article (peer-reviewed)abstract
    • Ecosystems are defined by the community of living organisms and how they interact together and with theirenvironment. Insects and plants are key taxa in terrestrial ecosystems and their network determines the trophicstructure of the environment. However, what drives the interactions between plants and insects in modern andfossil ecosystems is not well understood. In this study, we analyzed insect damage richness and frequency in 5000 fossil leaves deposited during the early Miocene at 20–17 Ma along a latitudinal gradient from Europe (twolocalities in Czech Republic) to Turkey (one locality) in a temperate climate setting. Damage frequency wasmainly linked with abiotic factors (temperature, precipitation seasonality) whereas damage richness was mainlylinked with biotic factors (plant richness, biome). Univariate analysis of insect damage types consistently suggested closer trophic similarity between the Mediterranean and either the one or the other Central European plant assemblage. In contrast, multivariate analysis of all insect damage types indicated closer similarity between the two Central European sites highlighting the importance of biogeographic legacy and geographic closeness to the plant-insect interaction patterns. Our results underscore the high complexity of the herbivory network andcall for careful interpretations of plant-insect interaction patterns in palaeoecological studies. Finally, comparing the trophic similarity between different localities using total evidence plots as done in this work might be apromising complementary method in comparative studies of plant-insect interactions.
  •  
3.
  • Bouchal, Johannes M., 1979-, et al. (author)
  • Messinian vegetation and climate of the intermontane Florina–Ptolemais–Servia Basin, NW Greece inferred from palaeobotanical data: how well do plant fossils reflect past environments?
  • 2020
  • In: Royal Society Open Science. - London : The Royal Society. - 2054-5703. ; 7, s. 1-30
  • Journal article (peer-reviewed)abstract
    • The late Miocene is marked by pronounced environmentalchanges and the appearance of strong temperature andprecipitation seasonality. Although environmental heterogeneityis to be expected during this time, it is challenging to reconstructpalaeoenvironments using plant fossils. We investigated leavesand dispersed spores/pollen from 6.4 to 6 Ma strata inthe intermontane Florina–Ptolemais–Servia Basin (FPS) ofnorthwestern Greece. To assess how well plant fossils reflectthe actual vegetation of the FPS, we assigned fossil taxa tobiomes providing a measure for environmental heterogeneity.Additionally, the palynological assemblage was compared withpollen spectra from modern lake sediments to assess biases inspore/pollen representation in the pollen record. We found aclose match of the Vegora assemblage with modern Fagus–Abiesforests of Turkey. Using taxonomic affinities of leaf fossils, wefurther established close similarities of the Vegora assemblage with modern laurophyllous oak forests of Afghanistan. Finally, using information from sedimentaryenvironment and taphonomy, we distinguished local and distantly growing vegetation types.We thensubjected the plant assemblage of Vegora to different methods of climate reconstruction and discussedtheir potentials and limitations. Leaf and spore/pollen records allow accurate reconstructions ofpalaeoenvironments in the FPS, whereas extra-regional vegetation from coastal lowlands isprobably not captured.
  •  
4.
  • Bouchal, Johannes M., 1979-, et al. (author)
  • Middle Miocene climate of southwestern Anatolia from multiple botanical proxies
  • 2018
  • In: Climate of the Past Discussions. - Vienna : European Geosciences Union (EGU). - 1814-9340 .- 1814-9359 .- 1814-9332. ; 14, s. 1427-1440
  • Journal article (other academic/artistic)abstract
    • The middle Miocene climate transition (MMCT) was a phase of global cooling possibly linked to decreasing levels of atmospheric CO2. The MMCT coincided with the European  Mammal Faunal Zone MN6. From this time, important biogeographic links between Anatolia  and eastern Africa include the hominid Kenyapithecus. Vertebrate fossils suggested mixed  open and forested landscapes under (sub)tropical seasonal climates for Anatolia. Here, we  infer the palaeoclimate during the MMCT and the succeeding cooling phase for a middle Miocene (14.8–13.2 Ma) of an intramontane basin in southwestern Anatolia using three2palaeobotanical proxies: (i) Köppen signatures based on the nearest-living-relative principle. (ii) Leaf physiognomy analysed with the Climate Leaf Analysis Multivariate Program (CLAMP). (iii) Genus-level biogeographic affinities of fossil floras with modern regions. The three proxies reject tropical climates for the MMCT of southwestern Anatolia and instead infer warm temperate C climates. Köppen signatures reject summer-dry Cs climates but cannot discriminate between fully humid Cf and winter-dry Cw; CLAMP reconstructs Cf climate based on the low X3.wet/X3.dry ratio. Additionally, we assess whether the palaeobotanical record does resolve transitions from the warm Miocene Climatic Optimum (MCO, 16.8–14.7 Ma) into the MMCT (14.7–13.9 Ma), and a more pronounced cooling at 13.9–13.8 Ma, as reconstructed from benthic stable isotope data. For southwestern Anatolia, we find that arboreal taxa predominate in MCO floras (MN5), whereas in MMCT floras (MN6) abundances of arboreal and non-arboreal elements strongly fluctuate indicating higher structural complexity of the vegetation. Our data show a distinct pollen zone between MN6 and MN7+8 dominated by herbaceous taxa. The boundary MN6 and MN7+8, roughly corresponding to a first abrupt cooling at 13.9–13.8 Ma, possibly might be associated with this herb-rich pollen zone.
  •  
5.
  • Bouchal, Johannes M., 1979-, et al. (author)
  • Palynological and palaeobotanical investigations in the Miocene Yatağan basin, Turkey : High-resoluton taxonomy and biostratigraphy
  • 2015
  • Conference paper (other academic/artistic)abstract
    • The subject of this study is the palynology (biostratigraphic and taxonomic) and the plant remains of the lignite strip mines of Eskihisar, Salihpasalar, and Tinaz (Muğla province, western Turkey). In the Yatağan basin two Miocene to Pliocene formations are present, the Eskihisar Formation (early to middle Miocene) and the Yatağan Formation (late Miocene to early Pliocene). Both formations represent river and lake deposits consisting mainly of conglomerate, sandstone, claystone, limestone, tuffite, and intercalated lignite; the thickest, actively mined lignite seams occur in the Sekköy member of the Eskihisar Formation.Previous palynological studies of the palynoflora of the Yatağan basin mainly focussed on its biostratigraphic and palaeoclimatic significance, using conventional morphological nomenclature and light microscopy (LM).In this study the „single grain method“ is applied. Using this method, the same individual pollen grains are investigated by using both LM and scanning electron microscopy (SEM). The resulting high-resolution pictographs enable a much higher taxonomic resolution. The studied palynoflora is very rich and taxonomically diverse. Cryptogams are represented by more than ten spore morphotypes of at least three families (Osmundaceae, Pteridaceae, Polypodiaceae). Gymnosperm pollen is dominated by Cupressaceae, Gnetales (Ephedra), and Pinaceae (Cathaya, Keteleeria, Pinus). Angiosperm pollen can be assigned to 57 different genera belonging to Poaceae, Typhaceae, Altingiaceae, Amaranthaceae (Chenopodieae), Anacardiaceae, Apiaceae (three types), Asteraceae (Asteroideae, Cichoriodeae), Betulaceae (Alnus, Betula, Carpinus, Ostrya) Buxaceae, Campanulaceae, Caprifoliaceae (Lonicera), Caryophyllaceae, Dipsacaceae, Eucommiaceae, Euphorbiaceae, Fabaceae, Fagaceae (Fagus, Quercus, Trigonobalanopsis) Geraniaceae, Juglandaceae, Linnaceae (Linnum), Malvaceae, Myricaceae, Nymphaeaceae, Oleaceae (four different types), Plumbaginaceae (Armeria,), Polygonaceae (Rumex), Rosaceae, Sapindaceae (Acer), Ulmaceae (Cedrelospermum, Ulmus, Zelkova), and Zingiberales (Spirematospermum). In addition, more than two thousand plant macrofossils were collected in the course of repeated field trips, including remains of Pinaceae, Berberidiaceae (Mahonia), Betulaceae (Alnus, Carpinus), Buxaceae (Buxus), Fagaceae (Fagus, Quercus), Lauraceae, Malvaceae (Tilia), Myricaceae (Myrica), Rosaceae, Salicaceae (Populus, Salix), Sapindaceae (Acer), Smilacaceae (Smilax), Typhaceae (Typha), Ulmaceae (Zelkova). A combined analysis integrating these rich and diverse plant macro- and microfossil records will lead to a better understanding and refined reconstruction of the vegetation in the Yatağan basin during the middle to late Miocene.
  •  
6.
  • Denk, Thomas, et al. (author)
  • Catalogue of revised and new plant macrofossils from the Aquitanian-Burdigalian of Soma (W Turkey) – Biogeographic and palaeoclimatic implications
  • 2022
  • In: Review of Palaeobotany and Palynology. - Amsterdam : Elsevier. - 0034-6667 .- 1879-0615. ; 296, s. 1-42
  • Journal article (peer-reviewed)abstract
    • The position of Turkey between Europe and Asia makes this region interesting for palaeobotanical investigations. We investigated plant macrofossils from early Miocene deposits of W Turkey (Soma, Manisa) and compiled a catalogue of revised and new plant taxa. We documented 100 fossil-taxa, of which several are new for Turkey (Mahonia aff. pseudosimplex, Ziziphus paradisiaca, Comptonia longirostris, Carya denticulata, Viscum, Fatsia, Pungiphyllum cruciatum). Some previous records are rejected (e.g. Apocynophyllum, Cassia, Castanea, Ficus, Illicium, Liriodendron, Vaccinium). Using modern ecology and taphonomy, we reconstructed palaeoenvironments. We found evidence for a belt of drier, more open habitats with cycads, Dracaena, Mahonia, Smilax miohavanensis, and others. Other vegetation units comprise swamp and riparian forest with few dominants (expressed in highabundance of leaf specimens). On well-drained soils, lowland forest with large-leaved Lauraceae vel Fagaceae and rare elements (Fatsia) was present, while humid temperate broadleaf-deciduous and conifer forest flourished higher up. To infer palaeoclimate we used the Climate Leaf Analysis Multivariate Program (CLAMP) and compared the results with other Miocene localities of Turkey. Early Miocene floras had warm climates (mean annual temperature, MAT, and coldest month temperature, CMMT) with weak precipitation seasonality. MAT and CMMT were cooler during the early middle Miocene. Several fossil-taxa at Soma have biogeographic links with older/coeval localities in C Europe and/or the W Mediterranean region (cycads, Torreya, Dracaena, Smi-lax miohavanensis, Mahonia aff. pseudosimplex, Carya denticulata, Ilex miodipyrena, Pungiphyllum). Few taxa have clear links to C Asian floras (Comptonia longirostris). True E Mediterranean endemics are even rarer (Mahoniaspp., Quercus sosnowskyi).
  •  
7.
  • Denk, Thomas, et al. (author)
  • Early Miocene climate and biomes of Turkey: Evidence from leaf fossils, dispersed pollen, and petrified wood
  • 2019
  • In: Palaeogeography, Palaeoclimatology, Palaeoecology. - Amsterdam : Elsevier. - 0031-0182 .- 1872-616X. ; 530, s. 236-248
  • Journal article (peer-reviewed)abstract
    • The early Miocene was a period of major palaeogeographic reorganization in the eastern Mediterranean region, during which time the Anatolian Plateau became subaerial and several intracontinental basins intermittently became connected to the Paratethys and Mediterranean seas. In this paper, we analyse early Miocene vegetation and climate using leaf records, palynological assemblages, and fossil wood at 36 localities from western and central Turkey, most of which have precise age control based on radiometric dating and mammal faunal ages. Using the leaf flora of Güvem (Beş Konak, Keseköy), Climate Leaf-Analysis Multivariate Program (CLAMP) analyses and Köppen signatures were employed to infer a palaeoclimate typical of modern laurel forest regions. Based on the palynological records, abundance of various pollen-taxa was used as a measure of openness of vegetation and regional presence of major tree taxa. Most pollen floras are dominated by tree pollen (ranging from 85 to 98%) and indicated widespread afforestation. In the pollen diagrams, shifts in dominance from swamp forest elements (Taxodioideae) to well-drained forests (Pinaceae) indicate changes in lake levels or phases of basin development. Such shifts may have been associated with the development of more xeric forest vegetation. Wood anatomical features such as false tree rings further may indicate seasonal climate. Pollen diagrams and macrofossils reflect zonal and azonal broadleaf and needleleaf forest and extrazonal open vegetation. The latter occurred in areas with shallow soils on volcanic rocks or limestone (e.g. cycads, Dracaena), or coastal areas (herb dominance). Taxonomic composition and biogeographic affinities suggest laurel forest as a major forest biome on well-drained soils and ecotones between laurel forest and broadleaf deciduous forest biomes. A comparison with younger floras shows that these are neither more diverse nor more warmth-loving despite an increase in global temperature (Mid-Miocene Climatic Optimum) suggesting bottlenecks during previous (Oligocene) cooler times for warmth-loving taxa.
  •  
8.
  • Denk, Thomas, et al. (author)
  • Taxonomy and palaeoecology of two widespread western Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger
  • 2017
  • In: Review of Palaeobotany and Palynology. - Amsterdam : Elsevier. - 0034-6667 .- 1879-0615. ; 241, s. 98-128
  • Journal article (peer-reviewed)abstract
    • Sclerophyllous oaks (genus Quercus) play important roles in Neogene ecosystems of south-western Eurasia. Modern analogues (‘nearest living relatives’) for these oaks have been sought among five of six infrageneric lineages of Quercus, distributed across the entire Northern Hemisphere. A revision of leaf fossils from lower Miocene to Pliocene deposits suggests that morphotypes of the Quercus drymeja complex are very similar to a number of extant Himalayan, East Asian, and Southeast Asian species of Quercus Group Ilex and may indicate subtropical, relatively humid conditions. Quercus mediterranea comprises leaf morphotypes that are encountered in modern Mediterranean species of Quercus Group Ilex, but also in Himalayan and East Asian members of this group indicating fully humid or summer-wet conditions. The fossil taxa Quercus drymeja and Q. mediterranea should be treated as morphotype complexes, which possibly comprised different biological species at different times. Quercus mediterranea, although readily recognizable as a distinct morphotype in early to late Miocene plant assemblages, may in fact represent small leaves of the same plants that constitute the Quercus drymeja complex. Based on the available evidence, the taxa [GG1] forming the Q. drymeja complex and Q. mediterranea thrived in fully humid or summer-wet climates. The onset of the modern vegetational context of Mediterranean sclerophyllous oaks is difficult to trace, but may have been during the latest Pliocene/early Pleistocene.
  •  
9.
  • Denk, Thomas, et al. (author)
  • The early Miocene flora of Güvem (Central Anatolia, Turkey): a window into early Neogene vegetation and environments in the Eastern Mediterranean
  • 2017
  • In: Acta Palaeobotanica. - Berlin : De Gruyter Open. - 0001-6594 .- 1427-6402 .- 2082-0259. ; 57:2, s. 237-338
  • Journal article (peer-reviewed)abstract
    • The early Burdigalian (MN3) plant assemblage of the Güvem area (northwestern Central Anatolia) is preserved in lacustrine sediments of the Dereköy pyroclastics. Its age is well constrained by radiometric dates of basaltic rocks bracketing the pyroclastics, making the Güvem flora one of the extremely few precisely dated early Miocene floras in the Mediterranean region. The rich assemblage of impression fossils comprises ferns and fern allies (2 species), gymnosperms (12 spp.) and angiosperms (129 spp.). Ilex miodipyrena sp. nov. is described as a new fossil-species. The most diverse families in the assemblage are the Fagaceae with 12 taxa and the Fabaceae with 12 leaf morphotypes and one fruit taxon. Aquatic plants are represented by seven taxa, riparian (including palms) and swamp forest elements by >35 taxa, and lianas by three taxa (Smilax spp., Chaneya). The relatively large number of aquatic and riparian/swamp elements is congruent with the rich fish, amphibian and reptile record of the Güvem area. Another characteristic feature of the plant assemblage is the presence of various lobed leaves which show similarities with modern species of different families (e.g. Alangium, various Malvales). Trees and shrubs growing on well-drained soils and forming closed-canopy and open-canopy forests are the most diversified group (>70 taxa). In terms of number of specimens in the collection and based on field observations, by far the most abundant leaf fossils belong to evergreen oaks of Quercus drymeja and Q. mediterranea and to various types of foliage that cannot be assigned to a particular extant or extinct genus of Fagaceae. These sclerophyllous trees must have covered vast areas surrounding the wetlands that developed during the early Miocene in the Güvem Basin. Based on a recent reassessment of the ecology and taxonomic affinity of these trees, they are considered to reflect humid temperate climatic conditions but with a brief drier season during the winter months. These forests are more similar to the laurel forests of the southeastern United States and those stretching in a narrow belt south of the Himalayas to eastern central China. The large number of Fabaceae may indicate the presence of warm subtropical environments but this is difficult to assess, as they are known for having wide ecological ranges today and in the past. All in all, a larger part of the plant taxa point to forested vegetation. This is in agreement with previous palynological studies which detected only small amounts of herbaceous and grass pollen. Open patches of vegetation may have been restricted to river banks and to rocky areas in a volcanic landscape. The biogeographic patterns detected for the early Miocene of the Güvem assemblage are manifold; most taxa are widespread Northern Hemispheric elements. A substantial part of the species migrated from Asia into Europe during the (late) Paleogene and reached Anatolia during the early Miocene (Fagus, Paliurus, Chaneya, Ailanthus, Quercus kubinyii, Davallia haidingeri, Acer angustilobum, A. palaeosaccharinum). Fewer taxa may have been in Anatolia before they migrated to Europe (e.g. Nerium, Smilax miohavanensis, Quercus sosnowskyi). Finally, very few taxa are Anatolian endemics (e.g. Ilex miodipyrena).
  •  
10.
  • Denk, Thomas, et al. (author)
  • The Pleistocene flora of Bezhan, southeast Albania: early appearance of extant tree species
  • 2021
  • In: Historical Biology. - : Taylor & Francis. - 0891-2963 .- 1029-2381. ; 33, s. 283-305
  • Journal article (peer-reviewed)abstract
    • The piggyback basin of Bezhan, southeastern Albania, was formed during the late Neogene and contains Pliocene/Pleistocene deposits. These continental deposits consist of marls, siltstones and clays separated by a thin series of lignite-seams alternating with clays (Bezhan formation). We investigated leaf fossils and dispersed pollen from marls of the upper portion of this formation. Fifty-two plant taxa comprising algae, gymnosperms, and angiosperms were recovered. Of these, at least 19% belong to extant species and less than 16% belong to taxa today extinct in western Eurasia. Tsuga is represented by three pollen taxa with affinities to modern Chinese, Japanese, and North American species. Herbaceous taxa indicative of steppe (Artemisia, Amaranthaceae) occur in low quantities (≤1%)suggesting an interglacial setting. Four vegetation units are recognised: Wet riparian and aquatic vegetation, mesic oak forest, dry sub-Mediterranean woodland, and montane conifer forest. A comparison of the Bezhan flora with well-dated Pliocene and Pleistocene floras of Italy suggests a Calabrian (late early Pleistocene) age for the upper unit. This estimate is based on the abundance of extant taxa, the absence of subtropical taxa, and threshold values of particular taxa (Tsuga, Carya). The findings are in agreement with age estimates for extant tree species from molecular studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view