SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gabriel Salazar Marina) "

Search: WFRF:(Gabriel Salazar Marina)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Medina-Dols, Aina, et al. (author)
  • Role of PATJ in stroke prognosis by modulating endothelial to mesenchymal transition through the Hippo/Notch/PI3K axis
  • 2024
  • In: Cell Death Discovery. - : Springer Nature. - 2058-7716. ; 10
  • Journal article (peer-reviewed)abstract
    • Through GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) <= 2), compared to those patients with marked disability (mRS = 4-5). In mice brains, PATJ was also downregulated in the injured hemisphere at 48 h after ischemia. Oxygen-glucose deprivation and hypoxia-dependent of Hypoxia Inducible Factor-1 alpha also caused PATJ depletion in ECs. To study the effects of PATJ downregulation, we generated PATJ-knockdown human microvascular ECs. Their transcriptomic profile evidenced a complex cell reprogramming involving Notch, TGF-ss, PI3K/Akt, and Hippo signaling that translates in morphological and functional changes compatible with endothelial to mesenchymal transition (EndMT). PATJ depletion caused loss of cell-cell adhesion, upregulation of metalloproteases, actin cytoskeleton remodeling, cytoplasmic accumulation of the signal transducer C-terminal transmembrane Mucin 1 (MUC1-C) and downregulation of Notch and Hippo signaling. The EndMT phenotype of PATJ-depleted cells was associated with the nuclear recruitment of MUC1-C, YAP/TAZ, beta-catenin, and ZEB1. Our results suggest that PATJ downregulation 24 h after IS promotes EndMT, an initial step prior to secondary activation of a pro-angiogenic program. This effect is associated with functional independence suggesting that activation of EndMT shortly after stroke onset is beneficial for stroke recovery.
  •  
2.
  • Allentoft, Morten E., et al. (author)
  • Population genomics of post-glacial western Eurasia
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 301-311
  • Journal article (peer-reviewed)abstract
    • Western Eurasia witnessed several large-scale human migrations during the Holocene1–5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes—mainly from the Mesolithic and Neolithic periods—from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a ‘great divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 bp, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 bp, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
  •  
3.
  • Zamora, Juan Carlos, et al. (author)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • In: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Journal article (peer-reviewed)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3
Type of publication
journal article (3)
Type of content
peer-reviewed (3)
Author/Editor
Larsson, Lars (1)
Larsson, Ellen, 1961 (1)
Svantesson, Sten (1)
Kõljalg, Urmas (1)
Saar, Irja (1)
Ghobad-Nejhad, Masoo ... (1)
show more...
Pawlowska, Julia (1)
Suija, Ave (1)
Peintner, Ursula (1)
Zhao, Lei (1)
Persson, Per (1)
Mešić, Armin (1)
Miettinen, Otto (1)
Rebriev, Yury A. (1)
Borovicka, Jan (1)
Svensson, Måns (1)
Nagy, István (1)
Tibell, Leif (1)
Rosengren, Anders (1)
Lynnerup, Niels (1)
Sjögren, Karl-Göran, ... (1)
Thor, Göran (1)
Ahti, Teuvo (1)
Mayrhofer, Helmut (1)
Kärnefelt, Ingvar (1)
Thell, Arne (1)
Moberg, Roland (1)
Chen, Jie (1)
De Kesel, André (1)
Ryman, Svengunnar (1)
Allentoft, Morten E. (1)
Sikora, Martin (1)
Fischer, Anders, 195 ... (1)
Ingason, Andrés (1)
Macleod, Ruairidh (1)
Schulz Paulsson, Bet ... (1)
Jørkov, Marie Louise ... (1)
Stenderup, Jesper (1)
Price, T. Douglas (1)
Fischer Mortensen, M ... (1)
Nielsen, Anne Birgit ... (1)
Ulfeldt Hede, Mikkel (1)
Sørensen, Lasse (1)
Nielsen, Poul Otto (1)
Rasmussen, Peter (1)
Jensen, Theis Zetner ... (1)
Refoyo-Martínez, Alb ... (1)
Kristiansen, Kristia ... (1)
Barrie, William (1)
Pearson, Alice (1)
show less...
University
University of Gothenburg (2)
Uppsala University (2)
Lund University (2)
Swedish Museum of Natural History (1)
Swedish University of Agricultural Sciences (1)
Language
English (3)
Research subject (UKÄ/SCB)
Natural sciences (2)
Medical and Health Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view